{"title":"Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties","authors":"E. Yu. Safronova, A. A. Lysova","doi":"10.1134/S2517751623060070","DOIUrl":null,"url":null,"abstract":"<p>The progress of modern technologies and the requirements imposed on the production ecology demand the development of new ion-exchange membrane polymer materials with a set of desired properties. These materials are used in liquid and gas separation and purification systems, chemical and electrochemical syntheses, and alternative energetics. Membrane materials based on perfluorosulfonic acid polymers (PFSA) possess a set of characteristics necessary for their practical application: high ionic conductivity and selectivity and good chemical stability, strength, and elasticity. This review addresses the microstructure of PFSA membranes and its change induced by water and solvent uptake and discusses the features of ion and gas transport, mechanical properties, and the dependence of a number of parameters on polymer chain length and ionic form.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 6","pages":"379 - 393"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623060070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The progress of modern technologies and the requirements imposed on the production ecology demand the development of new ion-exchange membrane polymer materials with a set of desired properties. These materials are used in liquid and gas separation and purification systems, chemical and electrochemical syntheses, and alternative energetics. Membrane materials based on perfluorosulfonic acid polymers (PFSA) possess a set of characteristics necessary for their practical application: high ionic conductivity and selectivity and good chemical stability, strength, and elasticity. This review addresses the microstructure of PFSA membranes and its change induced by water and solvent uptake and discusses the features of ion and gas transport, mechanical properties, and the dependence of a number of parameters on polymer chain length and ionic form.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.