Some properties of the integration operators on the spaces F(p, q, s)

IF 1.2 4区 数学 Q1 MATHEMATICS
Jiale Chen
{"title":"Some properties of the integration operators on the spaces F(p, q, s)","authors":"Jiale Chen","doi":"10.1007/s10473-024-0109-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the closed range property and the strict singularity of integration operators acting on the spaces <i>F</i>(<i>p, pα</i> − 2, <i>s</i>). We completely characterize the closed range property of the Volterra companion operator <i>I</i><sub><i>g</i></sub> on <i>F</i>(<i>p, pα</i> − 2, <i>s</i>), which generalizes the existing results and answers a question raised in [A. Anderson, Integral Equations Operator Theory, 69 (2011), no. 1, 87–99]. For the Volterra operator <i>J</i><sub><i>g</i></sub>, we show that, for 0 &lt; <i>α</i> ≤ 1, <i>J</i><sub><i>g</i></sub> never has a closed range on <i>F</i> (<i>p, pα</i> − 2, <i>s</i>). We then prove that the notions of compactness, weak compactness and strict singularity coincide in the case of <i>J</i><sub><i>g</i></sub> acting on <i>F</i>(<i>p,p</i> − 2, <i>s</i>).</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"173 - 188"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0109-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the closed range property and the strict singularity of integration operators acting on the spaces F(p, pα − 2, s). We completely characterize the closed range property of the Volterra companion operator Ig on F(p, pα − 2, s), which generalizes the existing results and answers a question raised in [A. Anderson, Integral Equations Operator Theory, 69 (2011), no. 1, 87–99]. For the Volterra operator Jg, we show that, for 0 < α ≤ 1, Jg never has a closed range on F (p, pα − 2, s). We then prove that the notions of compactness, weak compactness and strict singularity coincide in the case of Jg acting on F(p,p − 2, s).

空间F(p, q, s)上积分算子的一些性质
研究了作用于空间F(p, pα−2,s)上的积分算子的闭范围性质和严格奇异性,完整刻画了F(p, pα−2,s)上的Volterra伴算子Ig的闭范围性质,推广了已有的结果,回答了[a]中提出的一个问题。安德森,积分方程算子理论,69 (2011),no。87 - 99]。对于Volterra算子Jg,我们证明,对于0 <当α≤1时,Jg在F(p,p α−2,s)上不存在闭合范围。在Jg作用于F(p,p−2,s)的情况下,证明了紧性、弱紧性和严格奇异性的概念是重合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信