Global solutions to 1D compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity and free-boundary

IF 1.2 4区 数学 Q1 MATHEMATICS
Shijin Ding, Yinghua Li, Yu Wang
{"title":"Global solutions to 1D compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity and free-boundary","authors":"Shijin Ding,&nbsp;Yinghua Li,&nbsp;Yu Wang","doi":"10.1007/s10473-024-0111-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the Navier-Stokes/Allen-Cahn system, which is used to model the dynamics of immiscible two-phase flows. We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form of <i>η</i>(<i>ρ</i>) = <i>ρ</i><sup><i>α</i></sup>. The existence of unique global <i>H</i><sup>2<i>m</i></sup>-solutions (<i>m</i> ∈ ℕ) to the free boundary problem is proven for when <span>\\(0 &lt; \\alpha &lt; {1 \\over 4}\\)</span>. Furthermore, we obtain the global <i>C</i><sup>∞</sup>-solutions if the initial data is smooth.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"195 - 214"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0111-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the Navier-Stokes/Allen-Cahn system, which is used to model the dynamics of immiscible two-phase flows. We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form of η(ρ) = ρα. The existence of unique global H2m-solutions (m ∈ ℕ) to the free boundary problem is proven for when \(0 < \alpha < {1 \over 4}\). Furthermore, we obtain the global C-solutions if the initial data is smooth.

具有密度依赖粘度和自由边界的一维可压缩Navier-Stokes/Allen-Cahn系统的全局解
本文研究了用于模拟非混相两相流动力学的Navier-Stokes/Allen-Cahn系统。我们考虑一维自由边界问题,并假设粘度系数以η(ρ) = ρα的形式依赖于密度。当\(0 < \alpha < {1 \over 4}\)时,证明了自由边界问题h - m-解(m∈_1)的存在性。进一步,我们得到了初始数据光滑时的全局C∞解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信