{"title":"On a unified convergence analysis for Newton-type methods solving generalized equations with the Aubin property","authors":"Ioannis K. Argyros , Santhosh George","doi":"10.1016/j.jco.2023.101817","DOIUrl":null,"url":null,"abstract":"<div><p>A plethora of applications from diverse disciplines reduce to solving generalized equations involving Banach space<span> valued operators. These equations are solved mostly iteratively, when a sequence is generated approximating a solution provided that certain conditions are valid on the starting point and the operators appearing on the method. Secant-type methods are developed whose specializations reduce to well known methods such as Newton, modified Newton, Secant<span>, Kurchatov and Steffensen<span><span> to mention a few. Unified local as well as semi-local analysis of these methods is presented using the celebrated contraction mapping principle in combination with the Aubin property of a set valued operator, and generalized continuity assumption on the operators on these methods. </span>Numerical applications complement the theory.</span></span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000869","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A plethora of applications from diverse disciplines reduce to solving generalized equations involving Banach space valued operators. These equations are solved mostly iteratively, when a sequence is generated approximating a solution provided that certain conditions are valid on the starting point and the operators appearing on the method. Secant-type methods are developed whose specializations reduce to well known methods such as Newton, modified Newton, Secant, Kurchatov and Steffensen to mention a few. Unified local as well as semi-local analysis of these methods is presented using the celebrated contraction mapping principle in combination with the Aubin property of a set valued operator, and generalized continuity assumption on the operators on these methods. Numerical applications complement the theory.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.