Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene

Marco Löffelholz , Jonas Weidner , Jan Hartmann , Hesam Ostovari , Jens Osiewacz , Stefan Engbers , Barbara Ellendorff , João R.C. Junqueira , Katja Weichert , Niklas von der Assen , Wolfgang Schuhmann , Thomas Turek
{"title":"Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene","authors":"Marco Löffelholz ,&nbsp;Jonas Weidner ,&nbsp;Jan Hartmann ,&nbsp;Hesam Ostovari ,&nbsp;Jens Osiewacz ,&nbsp;Stefan Engbers ,&nbsp;Barbara Ellendorff ,&nbsp;João R.C. Junqueira ,&nbsp;Katja Weichert ,&nbsp;Niklas von der Assen ,&nbsp;Wolfgang Schuhmann ,&nbsp;Thomas Turek","doi":"10.1016/j.scca.2023.100035","DOIUrl":null,"url":null,"abstract":"<div><p>Defossilizing ethylene production to decrease <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> emissions is an integral challenge in the context of climate change, as ethylene is one of the most important bulk chemicals. Electrochemical <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> reduction is a promising alternative to conventional steam cracking, reducing the carbon footprint of ethylene production when coupled with renewable energy sources. In this work, we present the optimization of a boron-doped copper catalyst towards higher selectivity for ethylene. The method for catalyst preparation is optimized, obtaining larger batch sizes while maintaining high ethylene selectivity. Additionally, life cycle assessment is applied to investigate the environmental impacts of electrochemical <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> reduction and to compare its carbon footprint with alternative pathways for ethylene production. Altogether, the scaled-up catalyst achieves promising electrochemical results while significantly reducing the carbon footprint for ethylene production in comparison to the conventional production pathway when combined with low-emission energy.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"3 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282692300024X/pdfft?md5=f1f32da6a65847b2929a1c623fb31137&pid=1-s2.0-S277282692300024X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277282692300024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Defossilizing ethylene production to decrease CO2 emissions is an integral challenge in the context of climate change, as ethylene is one of the most important bulk chemicals. Electrochemical CO2 reduction is a promising alternative to conventional steam cracking, reducing the carbon footprint of ethylene production when coupled with renewable energy sources. In this work, we present the optimization of a boron-doped copper catalyst towards higher selectivity for ethylene. The method for catalyst preparation is optimized, obtaining larger batch sizes while maintaining high ethylene selectivity. Additionally, life cycle assessment is applied to investigate the environmental impacts of electrochemical CO2 reduction and to compare its carbon footprint with alternative pathways for ethylene production. Altogether, the scaled-up catalyst achieves promising electrochemical results while significantly reducing the carbon footprint for ethylene production in comparison to the conventional production pathway when combined with low-emission energy.

优化可扩展的CuB催化剂,具有良好的碳足迹,用于电化学二氧化碳还原为乙烯
由于乙烯是最重要的散装化学品之一,在气候变化的背景下,乙烯生产的脱化石以减少二氧化碳排放是一项不可或缺的挑战。电化学二氧化碳还原是传统蒸汽裂解的一个很有前途的替代方案,当与可再生能源结合使用时,可以减少乙烯生产的碳足迹。在这项工作中,我们提出了一种硼掺杂铜催化剂的优化,以提高乙烯的选择性。优化了催化剂制备方法,获得了更大的批量,同时保持了较高的乙烯选择性。此外,生命周期评估应用于研究电化学二氧化碳还原的环境影响,并将其碳足迹与乙烯生产的替代途径进行比较。总的来说,放大后的催化剂取得了很好的电化学效果,同时与传统的生产途径相比,在结合低排放能源的情况下,显著减少了乙烯生产的碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信