A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia

Diana McSpadden , Steven Goldenberg , Binata Roy , Malachi Schram , Jonathan L. Goodall , Heather Richter
{"title":"A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia","authors":"Diana McSpadden ,&nbsp;Steven Goldenberg ,&nbsp;Binata Roy ,&nbsp;Malachi Schram ,&nbsp;Jonathan L. Goodall ,&nbsp;Heather Richter","doi":"10.1016/j.mlwa.2023.100518","DOIUrl":null,"url":null,"abstract":"<div><p>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"15 ","pages":"Article 100518"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827023000713/pdfft?md5=0b7cf337c2324211c4a189837657851e&pid=1-s2.0-S2666827023000713-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827023000713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.

弗吉尼亚州诺福克市街头洪水的机器学习替代模型的比较
以弗吉尼亚州诺福克为例的低洼沿海城市面临着由降雨和潮汐引起的街道洪水的挑战,这给交通和下水道系统带来了压力,并可能导致人身和财产损失。虽然高保真度、基于物理的模拟提供了城市洪水的准确预测,但其计算复杂性使其不适合实时应用。本研究利用2016年至2018年诺福克降雨事件的数据,将之前基于随机森林算法的替代模型与两种深度学习模型(长短期记忆(LSTM)和门控循环单元(GRU))的性能进行了比较。将深度学习与随机森林算法进行比较的动机是希望利用一种机器学习架构,该架构允许未来包含常见的不确定性量化技术,并有效整合相关的多模态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信