Rates of convergence for regression with the graph poly-Laplacian.

Nicolás García Trillos, Ryan Murray, Matthew Thorpe
{"title":"Rates of convergence for regression with the graph poly-Laplacian.","authors":"Nicolás García Trillos, Ryan Murray, Matthew Thorpe","doi":"10.1007/s43670-023-00075-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset <math><msubsup><mrow><mo>{</mo><msub><mi>x</mi><mi>i</mi></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup></math> and a set of noisy labels <math><mrow><msubsup><mrow><mo>{</mo><msub><mi>y</mi><mi>i</mi></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mo>⊂</mo><mi>R</mi></mrow></math> we let <math><mrow><msub><mi>u</mi><mi>n</mi></msub><mo>:</mo><msubsup><mrow><mo>{</mo><msub><mi>x</mi><mi>i</mi></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mo>→</mo><mi>R</mi></mrow></math> be the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When <math><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>g</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>ξ</mi><mi>i</mi></msub></mrow></math>, for iid noise <math><msub><mi>ξ</mi><mi>i</mi></msub></math>, and using the geometric random graph, we identify (with high probability) the rate of convergence of <math><msub><mi>u</mi><mi>n</mi></msub></math> to <i>g</i> in the large data limit <math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math>. Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model.</p>","PeriodicalId":74751,"journal":{"name":"Sampling theory, signal processing, and data analysis","volume":"21 2","pages":"35"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682086/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sampling theory, signal processing, and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43670-023-00075-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset {xi}i=1n and a set of noisy labels {yi}i=1nR we let un:{xi}i=1nR be the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When yi=g(xi)+ξi, for iid noise ξi, and using the geometric random graph, we identify (with high probability) the rate of convergence of un to g in the large data limit n. Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model.

图多拉普拉斯回归的收敛率。
在(特殊的)光滑样条问题中,我们考虑一个具有二次数据保真度惩罚和拉普拉斯正则化的变分问题。通过用一个多拉普拉斯正则子替换拉普拉斯正则子可以得到高阶正则性。该方法很容易适用于图,这里我们考虑图的多拉普拉斯正则化在一个完全监督,非参数,噪声破坏,回归问题。特别地,给定一个数据集{xi}i=1n和一组噪声标签{yi}i=1n∧R,我们让un:{xi}i=1n→R是一个能量的最小值,该能量由一个数据保真度项和一个适当缩放的图多拉普拉斯项组成。当yi=g(xi)+ξi时,对于iid噪声ξi,利用几何随机图,我们(以高概率)确定了un到g在大数据极限n→∞下的收敛速度。此外,我们的速度接近已知的收敛速度在通常的平滑样条模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信