{"title":"Divergence of separated nets with respect to displacement equivalence.","authors":"Michael Dymond, Vojtěch Kaluža","doi":"10.1007/s10711-023-00862-3","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a hierarchy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions <math><mrow><mi>ϕ</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. Two separated nets are called <math><mi>ϕ</mi></math>-<i>displacement equivalent</i> if, roughly speaking, there is a bijection between them which, for large radii <i>R</i>, displaces points of norm at most <i>R</i> by something of order at most <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>. We show that the spectrum of <math><mi>ϕ</mi></math>-displacement equivalence spans from the established notion of <i>bounded displacement equivalence</i>, which corresponds to bounded <math><mi>ϕ</mi></math>, to the indiscrete equivalence relation, corresponding to <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>∈</mo><mi>Ω</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math>, in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of <math><mi>ϕ</mi></math>-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of <math><mrow><mi>ϕ</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math> for <math><mrow><mi>R</mi><mo>→</mo><mi>∞</mi></mrow></math>. We further undertake a comparison of our notion of <math><mi>ϕ</mi></math>-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of <math><mi>ϕ</mi></math>-displacement equivalence with that of <i>bilipschitz equivalence</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656347/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00862-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce a hierarchy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions . Two separated nets are called -displacement equivalent if, roughly speaking, there is a bijection between them which, for large radii R, displaces points of norm at most R by something of order at most . We show that the spectrum of -displacement equivalence spans from the established notion of bounded displacement equivalence, which corresponds to bounded , to the indiscrete equivalence relation, corresponding to , in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of -displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of for . We further undertake a comparison of our notion of -displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of -displacement equivalence with that of bilipschitz equivalence.