Dynamics of stored lipids in fall migratory monarch butterflies (Danaus plexippus): Nectaring in northern Mexico allows recovery from droughts at higher latitudes.
Keith A Hobson, Orley Taylor, M Isabel Ramírez, Rogelio Carrera-Treviño, John Pleasants, Royce Bitzer, Kristen A Baum, Blanca X Mora Alvarez, Jude Kastens, Jeremy N McNeil
{"title":"Dynamics of stored lipids in fall migratory monarch butterflies (<i>Danaus plexippus</i>): Nectaring in northern Mexico allows recovery from droughts at higher latitudes.","authors":"Keith A Hobson, Orley Taylor, M Isabel Ramírez, Rogelio Carrera-Treviño, John Pleasants, Royce Bitzer, Kristen A Baum, Blanca X Mora Alvarez, Jude Kastens, Jeremy N McNeil","doi":"10.1093/conphys/coad087","DOIUrl":null,"url":null,"abstract":"<p><p>The eastern population of the North American monarch butterfly (<i>Danaus plexippus</i>) overwinters from November through March in the high-altitude (3000 m+) forests of central Mexico during which time they rely largely on stored lipids. These are acquired during larval development and the conversion of sugars from floral nectar by adults. We sampled fall migrant monarchs from southern Canada through the migratory route to two overwintering sites in 2019 (n = 10 locations), 2020 (n = 8 locations) and 2021 (n = 7 locations). Moderate to extreme droughts along the migratory route were expected to result in low lipid levels in overwintering monarchs but our analysis of lipid levels of monarchs collected at overwintering sites indicated that in all years most had high levels of lipids prior to winter. Clearly, a significant proportion of lipids were consistently acquired in Mexico during the last portion of the migration. Drought conditions in Oklahoma, Texas and northern Mexico in 2019 resulted in the lowest levels of lipid mass and wing loading observed in that year but with higher levels at locations southward in Mexico to the overwintering sites. Compared with 2019, lipid levels increased during the 2020 and 2021 fall migrations but were again higher during the Mexican portion of the migration than for Oklahoma and Texas samples, emphasizing a recovery of lipids as monarchs advanced toward the overwintering locations. In all 3 years, body water was highest during the Canada-USA phase of migration but then declined during the nectar foraging phase in Mexico before recovering again at the overwintering sites. The increase in mass and lipids from those in Texas to the overwintering sites in Mexico indicates that nectar availability in Mexico can compensate for poor conditions experienced further north. Our work emphasizes the need to maintain the floral and therefore nectar resources that fuel both the migration and storage of lipids throughout the entire migratory route.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coad087","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The eastern population of the North American monarch butterfly (Danaus plexippus) overwinters from November through March in the high-altitude (3000 m+) forests of central Mexico during which time they rely largely on stored lipids. These are acquired during larval development and the conversion of sugars from floral nectar by adults. We sampled fall migrant monarchs from southern Canada through the migratory route to two overwintering sites in 2019 (n = 10 locations), 2020 (n = 8 locations) and 2021 (n = 7 locations). Moderate to extreme droughts along the migratory route were expected to result in low lipid levels in overwintering monarchs but our analysis of lipid levels of monarchs collected at overwintering sites indicated that in all years most had high levels of lipids prior to winter. Clearly, a significant proportion of lipids were consistently acquired in Mexico during the last portion of the migration. Drought conditions in Oklahoma, Texas and northern Mexico in 2019 resulted in the lowest levels of lipid mass and wing loading observed in that year but with higher levels at locations southward in Mexico to the overwintering sites. Compared with 2019, lipid levels increased during the 2020 and 2021 fall migrations but were again higher during the Mexican portion of the migration than for Oklahoma and Texas samples, emphasizing a recovery of lipids as monarchs advanced toward the overwintering locations. In all 3 years, body water was highest during the Canada-USA phase of migration but then declined during the nectar foraging phase in Mexico before recovering again at the overwintering sites. The increase in mass and lipids from those in Texas to the overwintering sites in Mexico indicates that nectar availability in Mexico can compensate for poor conditions experienced further north. Our work emphasizes the need to maintain the floral and therefore nectar resources that fuel both the migration and storage of lipids throughout the entire migratory route.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.