Friederike Pohlin, Carolin Frei, Leith C R Meyer, Franz-Ferdinand Roch, Narciso M Quijada, Beate Conrady, Viktoria Neubauer, Markus Hofmeyr, Dave Cooper, Gabrielle Stalder, Stefanie U Wetzels
{"title":"Capture and transport of white rhinoceroses (<i>Ceratotherium simum</i>) cause shifts in their fecal microbiota composition towards dysbiosis.","authors":"Friederike Pohlin, Carolin Frei, Leith C R Meyer, Franz-Ferdinand Roch, Narciso M Quijada, Beate Conrady, Viktoria Neubauer, Markus Hofmeyr, Dave Cooper, Gabrielle Stalder, Stefanie U Wetzels","doi":"10.1093/conphys/coad089","DOIUrl":null,"url":null,"abstract":"<p><p>Translocations of <i>Rhinocerotidae</i> are commonly performed for conservation purposes but expose the animals to a variety of stressors (e.g. prolonged fasting, confinement, novel environment, etc.). Stress may change the composition of gut microbiota, which can impact animal health and welfare. White rhinoceroses in particular can develop anorexia, diarrhea and enterocolitis after translocation. The aim of this study was to investigate the associations of age, sex and translocation on the rhinoceros' fecal bacterial microbiota composition. fecal samples were collected from rhinoceroses at capture (<i>n</i> = 16) and after a >30-hour road transport (<i>n</i> = 7). DNA was isolated from these samples and submitted for 16S rRNA V3-V4 phylotyping. Alpha diversity indices of the rhinoceros' fecal microbiota composition of different age, sex and before and after transport were compared using non-parametric statistical tests and beta diversity indices using Permutational Multivariate Analysis Of Variance (PERMANOVA). Resulting <i>P</i>-values were alpha-corrected (<i>P</i>adj<i>.</i>). Alpha and beta diversity did not differ between rhinoceroses of different age and sex. However, there was a significant difference in beta diversity between fecal samples collected from adult animals at capture and after transport. The most abundant bacterial phyla in samples collected at capture were <i>Firmicutes</i> and <i>Bacteroidetes</i> (85.76%), represented by <i>Lachnospiraceae</i>, <i>Ruminococcaceae</i> and <i>Prevotellaceae</i> families. The phyla <i>Proteobacteria</i> (<i>P</i>adj<i>.</i> = 0.009) and <i>Actinobacteria</i> (<i>P</i>adj<i>.</i> = 0.012), amongst others, increased in relative abundance from capture to after transport encompassing potentially pathogenic bacterial families such as <i>Enterobacteriaceae</i> (<i>P</i>adj<i>.</i> = 0.018) and <i>Pseudomonadaceae</i> (<i>P</i>adj<i>.</i> = 0.022). Important commensals such as <i>Spirochaetes</i> (<i>P</i>adj. = 0.009), <i>Fibrobacteres</i> (<i>P</i>adj. = 0.018) and <i>Lachnospiraceae</i> (<i>P</i>adj. = 0.021) decreased in relative abundance. These results indicate that the stressors associated with capture and transport cause an imbalanced fecal microbiota composition in white rhinoceroses that may lead to potentially infectious intestinal disorders. This imbalance may result from recrudescence of normally innocuous pathogens, increased shedding of pathogens or increased vulnerability to new pathogens.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coad089","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Translocations of Rhinocerotidae are commonly performed for conservation purposes but expose the animals to a variety of stressors (e.g. prolonged fasting, confinement, novel environment, etc.). Stress may change the composition of gut microbiota, which can impact animal health and welfare. White rhinoceroses in particular can develop anorexia, diarrhea and enterocolitis after translocation. The aim of this study was to investigate the associations of age, sex and translocation on the rhinoceros' fecal bacterial microbiota composition. fecal samples were collected from rhinoceroses at capture (n = 16) and after a >30-hour road transport (n = 7). DNA was isolated from these samples and submitted for 16S rRNA V3-V4 phylotyping. Alpha diversity indices of the rhinoceros' fecal microbiota composition of different age, sex and before and after transport were compared using non-parametric statistical tests and beta diversity indices using Permutational Multivariate Analysis Of Variance (PERMANOVA). Resulting P-values were alpha-corrected (Padj.). Alpha and beta diversity did not differ between rhinoceroses of different age and sex. However, there was a significant difference in beta diversity between fecal samples collected from adult animals at capture and after transport. The most abundant bacterial phyla in samples collected at capture were Firmicutes and Bacteroidetes (85.76%), represented by Lachnospiraceae, Ruminococcaceae and Prevotellaceae families. The phyla Proteobacteria (Padj. = 0.009) and Actinobacteria (Padj. = 0.012), amongst others, increased in relative abundance from capture to after transport encompassing potentially pathogenic bacterial families such as Enterobacteriaceae (Padj. = 0.018) and Pseudomonadaceae (Padj. = 0.022). Important commensals such as Spirochaetes (Padj. = 0.009), Fibrobacteres (Padj. = 0.018) and Lachnospiraceae (Padj. = 0.021) decreased in relative abundance. These results indicate that the stressors associated with capture and transport cause an imbalanced fecal microbiota composition in white rhinoceroses that may lead to potentially infectious intestinal disorders. This imbalance may result from recrudescence of normally innocuous pathogens, increased shedding of pathogens or increased vulnerability to new pathogens.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.