Htet Yamin Ko Ko, Nitin Kumar Tripathi, Chitrini Mozumder, Sombat Muengtaweepongsa, Indrajit Pal
{"title":"Real-Time Remote Patient Monitoring and Alarming System for Noncommunicable Lifestyle Diseases.","authors":"Htet Yamin Ko Ko, Nitin Kumar Tripathi, Chitrini Mozumder, Sombat Muengtaweepongsa, Indrajit Pal","doi":"10.1155/2023/9965226","DOIUrl":null,"url":null,"abstract":"Telemedicine and remote patient monitoring (RPM) systems have been gaining interest and received adaptation in healthcare sectors since the COVID-19 pandemic due to their efficiency and capability to deliver timely healthcare services while containing COVID-19 transmission. These systems were developed using the latest technology in wireless sensors, medical devices, cloud computing, mobile computing, telecommunications, and machine learning technologies. In this article, a real-time remote patient monitoring system is proposed with an accessible, compact, accurate, and low-cost design. The implemented system is designed to an end-to-end communication interface between medical practitioners and patients. The objective of this study is to provide remote healthcare services to patients who need ongoing care or those who have been discharged from the hospital without affecting their daily routines. The developed monitoring system was then evaluated on 1177 records from MIMIC-III clinical dataset (aged between 19 and 99 years). The performance analysis of the proposed system achieved 88.7% accuracy in generating alerts with logistic regression classification algorithm. This result reflects positively on the quality and robustness of the proposed study. Since the processing time of the proposed system is less than 2 minutes, it can be stated that the system has a high computational speed and is convenient to use in real-time monitoring. Furthermore, the proposed system will fulfil to cover the lower doctor-to-patient ratio by monitoring patients from remote locations and aged people who reside in their residences.","PeriodicalId":45630,"journal":{"name":"International Journal of Telemedicine and Applications","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Telemedicine and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9965226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Telemedicine and remote patient monitoring (RPM) systems have been gaining interest and received adaptation in healthcare sectors since the COVID-19 pandemic due to their efficiency and capability to deliver timely healthcare services while containing COVID-19 transmission. These systems were developed using the latest technology in wireless sensors, medical devices, cloud computing, mobile computing, telecommunications, and machine learning technologies. In this article, a real-time remote patient monitoring system is proposed with an accessible, compact, accurate, and low-cost design. The implemented system is designed to an end-to-end communication interface between medical practitioners and patients. The objective of this study is to provide remote healthcare services to patients who need ongoing care or those who have been discharged from the hospital without affecting their daily routines. The developed monitoring system was then evaluated on 1177 records from MIMIC-III clinical dataset (aged between 19 and 99 years). The performance analysis of the proposed system achieved 88.7% accuracy in generating alerts with logistic regression classification algorithm. This result reflects positively on the quality and robustness of the proposed study. Since the processing time of the proposed system is less than 2 minutes, it can be stated that the system has a high computational speed and is convenient to use in real-time monitoring. Furthermore, the proposed system will fulfil to cover the lower doctor-to-patient ratio by monitoring patients from remote locations and aged people who reside in their residences.
期刊介绍:
The overall aim of the International Journal of Telemedicine and Applications is to bring together science and applications of medical practice and medical care at a distance as well as their supporting technologies such as, computing, communications, and networking technologies with emphasis on telemedicine techniques and telemedicine applications. It is directed at practicing engineers, academic researchers, as well as doctors, nurses, etc. Telemedicine is an information technology that enables doctors to perform medical consultations, diagnoses, and treatments, as well as medical education, away from patients. For example, doctors can remotely examine patients via remote viewing monitors and sound devices, and/or sampling physiological data using telecommunication. Telemedicine technology is applied to areas of emergency healthcare, videoconsulting, telecardiology, telepathology, teledermatology, teleophthalmology, teleoncology, telepsychiatry, teledentistry, etc. International Journal of Telemedicine and Applications will highlight the continued growth and new challenges in telemedicine, applications, and their supporting technologies, for both application development and basic research. Papers should emphasize original results or case studies relating to the theory and/or applications of telemedicine. Tutorial papers, especially those emphasizing multidisciplinary views of telemedicine, are also welcome. International Journal of Telemedicine and Applications employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.