Tissue inhibitors of metalloproteinases (TIMPs) modulate platelet ADAM10 activity.

IF 2.5 3区 医学 Q3 CELL BIOLOGY
Platelets Pub Date : 2023-12-01 Epub Date: 2023-11-30 DOI:10.1080/09537104.2023.2288213
Christine Shu Mei Lee, Amandeep Kaur, Samantha J Montague, Sarah M Hicks, Robert K Andrews, Elizabeth E Gardiner
{"title":"Tissue inhibitors of metalloproteinases (TIMPs) modulate platelet ADAM10 activity.","authors":"Christine Shu Mei Lee, Amandeep Kaur, Samantha J Montague, Sarah M Hicks, Robert K Andrews, Elizabeth E Gardiner","doi":"10.1080/09537104.2023.2288213","DOIUrl":null,"url":null,"abstract":"<p><p>Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"34 1","pages":"2288213"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2023.2288213","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.

金属蛋白酶组织抑制剂(TIMPs)调节血小板ADAM10活性。
血小板特异性胶原受体糖蛋白(GP)VI在循环血小板表面是稳定的,但在活化的血小板上发生外畴切割。激活依赖性GPVI金属蛋白水解主要由A崩解素和金属蛋白酶(ADAM)介导10。血小板亚当斯活性的调节尚不明确,但组织金属蛋白酶抑制剂(TIMPs)可能发挥作用。由于尚未评估血小板上的TIMPs水平以及TIMPs对adams介导的脱落的控制,我们通过流式细胞术和多重ELISA定量了健康供者静止和活化血小板表面的TIMPs水平。所有TIMPs均可在血小板上检测到不同水平。血浆中含有大量的TIMP1和TIMP2,但只有微量的TIMP3和TIMP4。当使用具有ADAM10特异性的淬灭荧光肽底物监测时,重组TIMP3强烈地消融静息和活化血小板ADAM10活性。虽然adam10特异性抑制剂GI254023X或乙二胺四乙酸(EDTA)可以调节配体启动的GPVI脱落,但只有重组TIMP2具有适度(约20%)的抑制作用。我们得出结论,一些血小板TIMPs能够调节血小板ADAM10活性,但没有一个能强烈调节GPVI的配体依赖性脱落。我们的发现为血小板受体脱落酶活性的调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Platelets
Platelets 医学-细胞生物学
CiteScore
6.70
自引率
3.00%
发文量
79
审稿时长
1 months
期刊介绍: Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research. Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods. Research areas include: Platelet function Biochemistry Signal transduction Pharmacology and therapeutics Interaction with other cells in the blood vessel wall The contribution of platelets and platelet-derived products to health and disease The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor. Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信