Regulation of expression quantitative trait loci by SVA retrotransposons within the major histocompatibility complex.

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Experimental Biology and Medicine Pub Date : 2023-12-01 Epub Date: 2023-11-30 DOI:10.1177/15353702231209411
Jerzy K Kulski, Abigail L Pfaff, Luke D Marney, Alexander Fröhlich, Vivien J Bubb, John P Quinn, Sulev Koks
{"title":"Regulation of expression quantitative trait loci by SVA retrotransposons within the major histocompatibility complex.","authors":"Jerzy K Kulski, Abigail L Pfaff, Luke D Marney, Alexander Fröhlich, Vivien J Bubb, John P Quinn, Sulev Koks","doi":"10.1177/15353702231209411","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic and transcriptomic studies of expression quantitative trait loci (eQTL) revealed that SINE-VNTR-Alu (SVA) retrotransposon insertion polymorphisms (RIPs) within human genomes markedly affect the co-expression of many coding and noncoding genes by coordinated regulatory processes. This study examined the polymorphic SVA modulation of gene co-expression within the major histocompatibility complex (MHC) genomic region where more than 160 coding genes are involved in innate and adaptive immunity. We characterized the modulation of SVA RIPs utilizing the genomic and transcriptomic sequencing data obtained from whole blood of 1266 individuals in the Parkinson's Progression Markers Initiative (PPMI) cohort that included an analysis of human leukocyte antigen (<i>HLA</i>)<i>-A</i> regulation in a subpopulation of the cohort. The regulatory properties of eight SVAs located within the class I and class II MHC regions were associated with differential co-expression of 71 different genes within and 75 genes outside the MHC region. Some of the same genes were affected by two or more different SVA. Five SVA are annotated in the human genomic reference sequence GRCh38.p14/hg38, whereas the other three were novel insertions within individuals. We also examined and found distinct structural effects (long and short variants and the CT internal variants) for one of the SVA (<i>R_SVA_24</i>) insertions on the differential expression of the <i>HLA-A</i> gene within a subpopulation (550 individuals) of the PPMI cohort. This is the first time that many HLA and non-HLA genes (multilocus expression units) and splicing mechanisms have been shown to be regulated by eight structurally polymorphic SVA within the MHC genomic region by applying precise statistical analysis of RNA data derived from the blood samples of a human cohort population. This study shows that SVA within the MHC region are important regulators or rheostats of gene co-expression that might have potential roles in diversity, health, and disease.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231209411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic and transcriptomic studies of expression quantitative trait loci (eQTL) revealed that SINE-VNTR-Alu (SVA) retrotransposon insertion polymorphisms (RIPs) within human genomes markedly affect the co-expression of many coding and noncoding genes by coordinated regulatory processes. This study examined the polymorphic SVA modulation of gene co-expression within the major histocompatibility complex (MHC) genomic region where more than 160 coding genes are involved in innate and adaptive immunity. We characterized the modulation of SVA RIPs utilizing the genomic and transcriptomic sequencing data obtained from whole blood of 1266 individuals in the Parkinson's Progression Markers Initiative (PPMI) cohort that included an analysis of human leukocyte antigen (HLA)-A regulation in a subpopulation of the cohort. The regulatory properties of eight SVAs located within the class I and class II MHC regions were associated with differential co-expression of 71 different genes within and 75 genes outside the MHC region. Some of the same genes were affected by two or more different SVA. Five SVA are annotated in the human genomic reference sequence GRCh38.p14/hg38, whereas the other three were novel insertions within individuals. We also examined and found distinct structural effects (long and short variants and the CT internal variants) for one of the SVA (R_SVA_24) insertions on the differential expression of the HLA-A gene within a subpopulation (550 individuals) of the PPMI cohort. This is the first time that many HLA and non-HLA genes (multilocus expression units) and splicing mechanisms have been shown to be regulated by eight structurally polymorphic SVA within the MHC genomic region by applying precise statistical analysis of RNA data derived from the blood samples of a human cohort population. This study shows that SVA within the MHC region are important regulators or rheostats of gene co-expression that might have potential roles in diversity, health, and disease.

主要组织相容性复合体内SVA反转录转座子表达量性状位点的调控。
表达数量性状位点(eQTL)的基因组学和转录组学研究表明,人类基因组中的sin - vntr - alu (SVA)反转录转座子插入多态性(RIPs)通过协调的调控过程显著影响许多编码和非编码基因的共表达。本研究检测了主要组织相容性复合体(MHC)基因组区域内基因共表达的多态性SVA调节,其中160多个编码基因参与先天免疫和适应性免疫。我们利用从帕金森病进展标记计划(PPMI)队列中1266名个体的全血中获得的基因组和转录组测序数据表征了SVA ripps的调节,该队列包括对该队列中一个亚群的人类白细胞抗原(HLA)-A调节的分析。位于MHC I类和II类区域的8个SVAs的调控特性与MHC区域内的71个不同基因和MHC区域外的75个基因的差异共表达相关。一些相同的基因受到两种或更多不同SVA的影响。在人类基因组参考序列GRCh38中标注了5个SVA。P14 /hg38,而其他三个是个体内的新插入。我们还检查并发现了一个SVA (R_SVA_24)插入对PPMI队列亚群(550个个体)中HLA-A基因差异表达的明显结构效应(长、短变体和CT内部变体)。这是第一次通过对人类队列人群血液样本的RNA数据进行精确统计分析,证明MHC基因组区域内的8个结构多态性SVA调节了许多HLA和非HLA基因(多位点表达单位)和剪接机制。该研究表明,MHC区域内的SVA是基因共表达的重要调节因子或变阻器,可能在多样性、健康和疾病中发挥潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信