{"title":"Computation of the dynamic scalar response of large two-dimensional periodic and symmetric structures by the wave finite element method","authors":"D. Duhamel","doi":"10.1016/j.finel.2023.104096","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>In the past, the study of periodic media mainly focused on one-dimensional periodic structures (meaning periodic along one direction), on the one hand to determine the dispersion curves linking the frequencies to the wavenumbers and on the other hand to obtain the response of a structure to an external excitation, both for bounded or unbounded structures. In the latter case, effective approaches have been obtained, based on methods such as the Wave </span>Finite Element (WFE). Two-dimensional periodic media are more complex to analyse but dispersion curves can be obtained rather easily as in the one-dimensional case. Obtaining the </span>steady state response of two-dimensional periodic structures to time-harmonic excitations is much more difficult than for one-dimensional media and the results mainly concern infinite media. This work is about this last case of the steady state response of finite two-dimensional periodic structures to time-harmonic excitations by limiting oneself to structures described by a </span>scalar variable<span><span> (acoustic, thermal, membrane behaviour) and having symmetries compared to two orthogonal planes parallel to the edges of a substructure. Using the WFE for a rectangular substructure and imposing the wavenumber in one direction, we can numerically calculate the wavenumbers and mode shapes associated with propagation in the perpendicular direction. By building solutions with </span>null forces on parallel boundaries, we can decouple the waves in the two directions parallel to the sides of the rectangle. The solution of each of these two problems is obtained by a fast Fourier transformation giving the amplitudes associated with the waves. By summing the contributions of all these waves we obtain the global solution for a two-dimensional periodic medium with a large number of substructures and a low computing time. Examples are given for the case of a two-dimensional membrane with many substructures and different types of heterogeneities.</span></p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X23001890","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the past, the study of periodic media mainly focused on one-dimensional periodic structures (meaning periodic along one direction), on the one hand to determine the dispersion curves linking the frequencies to the wavenumbers and on the other hand to obtain the response of a structure to an external excitation, both for bounded or unbounded structures. In the latter case, effective approaches have been obtained, based on methods such as the Wave Finite Element (WFE). Two-dimensional periodic media are more complex to analyse but dispersion curves can be obtained rather easily as in the one-dimensional case. Obtaining the steady state response of two-dimensional periodic structures to time-harmonic excitations is much more difficult than for one-dimensional media and the results mainly concern infinite media. This work is about this last case of the steady state response of finite two-dimensional periodic structures to time-harmonic excitations by limiting oneself to structures described by a scalar variable (acoustic, thermal, membrane behaviour) and having symmetries compared to two orthogonal planes parallel to the edges of a substructure. Using the WFE for a rectangular substructure and imposing the wavenumber in one direction, we can numerically calculate the wavenumbers and mode shapes associated with propagation in the perpendicular direction. By building solutions with null forces on parallel boundaries, we can decouple the waves in the two directions parallel to the sides of the rectangle. The solution of each of these two problems is obtained by a fast Fourier transformation giving the amplitudes associated with the waves. By summing the contributions of all these waves we obtain the global solution for a two-dimensional periodic medium with a large number of substructures and a low computing time. Examples are given for the case of a two-dimensional membrane with many substructures and different types of heterogeneities.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.