Commutativity of quantization with conic reduction for torus actions on compact CR manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
Andrea Galasso
{"title":"Commutativity of quantization with conic reduction for torus actions on compact CR manifolds","authors":"Andrea Galasso","doi":"10.1007/s10455-023-09931-y","DOIUrl":null,"url":null,"abstract":"<div><p>We define conic reductions <span>\\(X^{\\textrm{red}}_{\\nu }\\)</span> for torus actions on the boundary <i>X</i> of a strictly pseudo-convex domain and for a given weight <span>\\(\\nu \\)</span> labeling a unitary irreducible representation. There is a natural residual circle action on <span>\\(X^{\\textrm{red}}_{\\nu }\\)</span>. We have two natural decompositions of the corresponding Hardy spaces <i>H</i>(<i>X</i>) and <span>\\(H(X^{\\textrm{red}}_{\\nu })\\)</span>. The first one is given by the ladder of isotypes <span>\\(H(X)_{k\\nu }\\)</span>, <span>\\(k\\in {\\mathbb {Z}}\\)</span>; the second one is given by the <i>k</i>-th Fourier components <span>\\(H(X^{\\textrm{red}}_{\\nu })_k\\)</span> induced by the residual circle action. The aim of this paper is to prove that they are isomorphic for <i>k</i> sufficiently large. The result is given for spaces of (0, <i>q</i>)-forms with <span>\\(L^2\\)</span>-coefficient when <i>X</i> is a CR manifold with non-degenerate Levi form.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09931-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09931-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define conic reductions \(X^{\textrm{red}}_{\nu }\) for torus actions on the boundary X of a strictly pseudo-convex domain and for a given weight \(\nu \) labeling a unitary irreducible representation. There is a natural residual circle action on \(X^{\textrm{red}}_{\nu }\). We have two natural decompositions of the corresponding Hardy spaces H(X) and \(H(X^{\textrm{red}}_{\nu })\). The first one is given by the ladder of isotypes \(H(X)_{k\nu }\), \(k\in {\mathbb {Z}}\); the second one is given by the k-th Fourier components \(H(X^{\textrm{red}}_{\nu })_k\) induced by the residual circle action. The aim of this paper is to prove that they are isomorphic for k sufficiently large. The result is given for spaces of (0, q)-forms with \(L^2\)-coefficient when X is a CR manifold with non-degenerate Levi form.

紧CR流形上环面作用的二次约化量化交换性
我们定义了在严格伪凸域的边界X上的环面作用的二次约简\(X^{\textrm{red}}_{\nu }\),并对给定的权\(\nu \)标记了一个酉不可约表示。在\(X^{\textrm{red}}_{\nu }\)上有一个自然的残圆作用。我们有对应的Hardy空间H(X)和\(H(X^{\textrm{red}}_{\nu })\)的两种自然分解。第一个由同型阶梯\(H(X)_{k\nu }\), \(k\in {\mathbb {Z}}\)给出;第二个由残余圆作用引起的第k个傅立叶分量\(H(X^{\textrm{red}}_{\nu })_k\)给出。本文的目的是证明它们在k足够大时是同构的。给出了当X是具有非退化Levi形式的CR流形时,具有\(L^2\)系数的(0,q)-形式空间的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信