Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.

IF 3.3 2区 医学 Q1 PHYSIOLOGY
Journal of General Physiology Pub Date : 2024-01-01 Epub Date: 2023-11-29 DOI:10.1085/jgp.202213311
Rong Shen, Benoît Roux, Eduardo Perozo
{"title":"Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.","authors":"Rong Shen, Benoît Roux, Eduardo Perozo","doi":"10.1085/jgp.202213311","DOIUrl":null,"url":null,"abstract":"<p><p>The S4 segment of voltage-sensing domains (VSDs) directly responds to voltage changes by reorienting within the electric field as a permion. A narrow hydrophobic \"gasket\" or charge transfer center at the core of most VSDs focuses the electric field into a narrow region and catalyzes the sequential and reversible translocation of S4 positive gating charge residues across the electric field while preventing the permeation of physiological ions. Mutating specific S4 gating charges can cause ionic leak currents through the VSDs. These gating pores or omega currents play important pathophysiological roles in many diseases of excitability. Here, we show that mutating D129, a key countercharge residue in the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), leads to the generation of unique anionic omega currents. Neutralizing D129 causes a dramatic positive shift of activation, facilitates the formation of a continuous water path through the VSD, and creates a positive electrostatic potential landscape inside the VSD that contributes to its unique anionic selectivity. Increasing the population or dwell time of the conducting state by a high external pH or an engineered Cd2+ bridge markedly increases the current magnitude. Our findings uncover a new role of countercharge residues in the impermeable VSD of Ci-VSP and offer insights into mechanisms of the conduction of anionic omega currents linked to countercharge residue mutations.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202213311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The S4 segment of voltage-sensing domains (VSDs) directly responds to voltage changes by reorienting within the electric field as a permion. A narrow hydrophobic "gasket" or charge transfer center at the core of most VSDs focuses the electric field into a narrow region and catalyzes the sequential and reversible translocation of S4 positive gating charge residues across the electric field while preventing the permeation of physiological ions. Mutating specific S4 gating charges can cause ionic leak currents through the VSDs. These gating pores or omega currents play important pathophysiological roles in many diseases of excitability. Here, we show that mutating D129, a key countercharge residue in the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), leads to the generation of unique anionic omega currents. Neutralizing D129 causes a dramatic positive shift of activation, facilitates the formation of a continuous water path through the VSD, and creates a positive electrostatic potential landscape inside the VSD that contributes to its unique anionic selectivity. Increasing the population or dwell time of the conducting state by a high external pH or an engineered Cd2+ bridge markedly increases the current magnitude. Our findings uncover a new role of countercharge residues in the impermeable VSD of Ci-VSP and offer insights into mechanisms of the conduction of anionic omega currents linked to countercharge residue mutations.

单反电荷突变体在Ci-VSP电压传感领域的阴离子ω电流。
电压感应畴(VSDs)的S4段通过在电场内重新定向作为许可直接响应电压变化。大多数vsd的核心有一个狭窄的疏水“衬垫”或电荷转移中心,将电场聚焦到一个狭窄的区域,催化S4正电荷残基在电场上的顺序可逆易位,同时阻止生理离子的渗透。突变特定的S4门控电荷会导致离子泄漏电流通过vsd。这些门控孔或ω电流在许多兴奋性疾病中起着重要的病理生理作用。在这里,我们发现突变D129,一个关键的反电荷残基在玉米电压感应磷酸酶(Ci-VSP)中,导致独特的阴离子ω电流的产生。中和D129会导致激活的显著正向转变,促进通过VSD的连续水通道的形成,并在VSD内部创造一个正的静电势景观,这有助于其独特的阴离子选择性。通过高外部pH值或工程Cd2+桥来增加导电态的居群或停留时间显着增加电流大小。我们的研究结果揭示了反电荷残基在Ci-VSP的不渗透VSD中的新作用,并提供了与反电荷残基突变相关的阴离子ω电流传导机制的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信