{"title":"Improving the mixed model for repeated measures to robustly increase precision in randomized trials.","authors":"Bingkai Wang, Yu Du","doi":"10.1515/ijb-2022-0101","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2022-0101","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.