V. S. Guliyev, C. Aykol, A. Kucukaslan, A. Serbetci
{"title":"Fractional maximal operator in the local Morrey–Lorentz spaces and some applications","authors":"V. S. Guliyev, C. Aykol, A. Kucukaslan, A. Serbetci","doi":"10.1007/s13370-023-01145-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we obtain the necessary and sufficient conditions for the boundedness of the fractional maximal operator <span>\\(M_{\\alpha }\\)</span> in the local Morrey–Lorentz spaces <span>\\(M_{p,q;\\lambda }^{loc}({\\mathbb {R}}^n)\\)</span>. We use sharp rearrangement inequalities while proving our result. We apply this result to the Schrödinger operator <span>\\(-\\Delta + V\\)</span> on <span>\\({\\mathbb {R}}^n\\)</span>, where the nonnegative potential <i>V</i> belongs to the reverse Hölder class <span>\\(B_{\\infty }({\\mathbb {R}}^n)\\)</span>. The local Morrey–Lorentz <span>\\(M_{p,r;\\lambda }^{loc}({\\mathbb {R}}^n) \\rightarrow M_{q,s;\\lambda }^{loc}({\\mathbb {R}}^n)\\)</span> estimates for the Schrödinger type operators <span>\\(V^{\\gamma } (-\\Delta +V)^{-\\beta }\\)</span> and <span>\\(V^{\\gamma } \\nabla (-\\Delta +V)^{-\\beta }\\)</span> are obtained.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01145-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we obtain the necessary and sufficient conditions for the boundedness of the fractional maximal operator \(M_{\alpha }\) in the local Morrey–Lorentz spaces \(M_{p,q;\lambda }^{loc}({\mathbb {R}}^n)\). We use sharp rearrangement inequalities while proving our result. We apply this result to the Schrödinger operator \(-\Delta + V\) on \({\mathbb {R}}^n\), where the nonnegative potential V belongs to the reverse Hölder class \(B_{\infty }({\mathbb {R}}^n)\). The local Morrey–Lorentz \(M_{p,r;\lambda }^{loc}({\mathbb {R}}^n) \rightarrow M_{q,s;\lambda }^{loc}({\mathbb {R}}^n)\) estimates for the Schrödinger type operators \(V^{\gamma } (-\Delta +V)^{-\beta }\) and \(V^{\gamma } \nabla (-\Delta +V)^{-\beta }\) are obtained.