{"title":"Algebraic points on the curve of affine equation \\(y^2 =x(x-3)(x-4)(x-6)(x-7)\\)","authors":"Boubacar Sidy Balde, Oumar Sall","doi":"10.1007/s13370-023-01128-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we use the finiteness of the Mordell–Weil group of the Jacobian variety of the curve <span>\\(\\mathcal {C}:y^2 =x(x-3)(x-4)(x-6)(x-7)\\)</span> and the Riemann Roch spaces to determine explicitly the set of algebraic points of given degree <i>l</i> over <span>\\(\\mathbb {Q}\\)</span> on the curve <span>\\(\\mathcal {C}\\)</span>. The results obtained extend the work of Gordon and Grant, who determined the Mordell–Weil group <span>\\(J(\\mathbb {Q})\\)</span> and the set of rational points on the same curve.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01128-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we use the finiteness of the Mordell–Weil group of the Jacobian variety of the curve \(\mathcal {C}:y^2 =x(x-3)(x-4)(x-6)(x-7)\) and the Riemann Roch spaces to determine explicitly the set of algebraic points of given degree l over \(\mathbb {Q}\) on the curve \(\mathcal {C}\). The results obtained extend the work of Gordon and Grant, who determined the Mordell–Weil group \(J(\mathbb {Q})\) and the set of rational points on the same curve.