Oyawale Adetunji Moses , Mukhtar Lawan Adam , Zijian Chen , Collins Izuchukwu Ezeh , Hao Huang , Zhuo Wang , Zixuan Wang , Boyuan Wang , Wentao Li , Chensu Wang , Zongyou Yin , Yang Lu , Xue-Feng Yu , Haitao Zhao
{"title":"Machine learning and robot-assisted synthesis of diverse gold nanorods via seedless approach","authors":"Oyawale Adetunji Moses , Mukhtar Lawan Adam , Zijian Chen , Collins Izuchukwu Ezeh , Hao Huang , Zhuo Wang , Zixuan Wang , Boyuan Wang , Wentao Li , Chensu Wang , Zongyou Yin , Yang Lu , Xue-Feng Yu , Haitao Zhao","doi":"10.1016/j.aichem.2023.100028","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge of data-driven synthesis of advanced nanomaterials can be minimized by using machine learning algorithms to optimize synthesis parameters and expedite the innovation process. In this study, a high-throughput robotic platform was employed to synthesize over 1356 gold nanorods with varying aspect ratios via a seedless approach. The developed models guided us in synthesizing gold nanorods with customized morphology, resulting in highly repeatable morphological yield with quantifiable structure-modulating precursor adjustments. The study provides insight into the dynamic relationships between key structure-modulating precursors and the structural morphology of gold nanorods based on the expected aspect ratio. The high-throughput robotic platform-fabricated gold nanorods demonstrated precise aspect ratio control when spectrophotometrically investigated and further validated with the transmission electron microscopy characterization. These findings demonstrate the potential of high-throughput robot-assisted synthesis and machine learning in the synthesis optimization of gold nanorods and aided in the development of models that can aid such synthesis of as-desired gold nanorods.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"1 2","pages":"Article 100028"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747723000283/pdfft?md5=8511642b616c7b56dec42d00c89c3ede&pid=1-s2.0-S2949747723000283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge of data-driven synthesis of advanced nanomaterials can be minimized by using machine learning algorithms to optimize synthesis parameters and expedite the innovation process. In this study, a high-throughput robotic platform was employed to synthesize over 1356 gold nanorods with varying aspect ratios via a seedless approach. The developed models guided us in synthesizing gold nanorods with customized morphology, resulting in highly repeatable morphological yield with quantifiable structure-modulating precursor adjustments. The study provides insight into the dynamic relationships between key structure-modulating precursors and the structural morphology of gold nanorods based on the expected aspect ratio. The high-throughput robotic platform-fabricated gold nanorods demonstrated precise aspect ratio control when spectrophotometrically investigated and further validated with the transmission electron microscopy characterization. These findings demonstrate the potential of high-throughput robot-assisted synthesis and machine learning in the synthesis optimization of gold nanorods and aided in the development of models that can aid such synthesis of as-desired gold nanorods.