An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense.

Nathan P Bullen, Cydney N Johnson, Shelby E Andersen, Garima Arya, Sonia R Marotta, Yan-Jiun Lee, Peter R Weigele, John C Whitney, Breck A Duerkop
{"title":"An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense.","authors":"Nathan P Bullen, Cydney N Johnson, Shelby E Andersen, Garima Arya, Sonia R Marotta, Yan-Jiun Lee, Peter R Weigele, John C Whitney, Breck A Duerkop","doi":"10.1101/2023.11.16.567456","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from <i>Enterococcus faecalis</i> involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in <i>E. faecalis</i>. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (<i>tifA</i>), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant <i>E. faecalis</i> and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.16.567456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.

一种小噬菌体蛋白的进化赋予了粪肠球菌抗噬菌体防御的抵抗力。
耐多药(MDR)细菌感染的流行率继续上升,因为对抗这些感染所需的新抗生素的开发仍然停滞不前。耐多药肠球菌是医院获得性感染的常见原因,正在成为造成这一危机的主要因素之一。对抗耐多药肠球菌的一种潜在治疗方法是噬菌体治疗,它需要使用裂解病毒来感染和杀死致病菌。虽然已经确定了能够溶解某些耐多药肠球菌菌株的噬菌体,但其他菌株表现出高水平的噬菌体耐药性,而这种耐药性的机制尚不清楚。在这里,我们使用CRISPR干扰(CRISPRi)筛选来鉴定在万古霉素耐药粪肠球菌可移动质粒上发现的与噬菌体耐药有关的遗传位点。该位点编码一种假定的丝氨酸重组酶,随后是一种IV型限制性内切酶(TIV-RE),我们发现这种酶足以限制粪肠杆菌中裂解噬菌体的复制。我们进一步发现噬菌体可以通过在许多肠球菌噬菌体编码的新型v - re抑制剂蛋白中获得错义突变来进化以克服限制。我们发现,这种抑制剂,我们已经命名为反限制因子a (arfA),直接结合并失活多种v -res。总的来说,我们的研究结果显著推进了我们对耐药粪肠杆菌中噬菌体防御的理解,并为噬菌体如何进化以克服抗噬菌体防御系统提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信