Long non-coding RNA linc00659 promotes tumour progression by regulating FZD6/Wnt/β-catenin signalling pathway in colorectal cancer via m6A reader IGF2BP1
IF 3.2 4区 医学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shufen Xu, Zichun Liu, Qian Luo, Lisha Chang, Jie Ding, Yanan Xiao, Yangyang Zhang, Guoren Zhou, Keming Wang
{"title":"Long non-coding RNA linc00659 promotes tumour progression by regulating FZD6/Wnt/β-catenin signalling pathway in colorectal cancer via m6A reader IGF2BP1","authors":"Shufen Xu, Zichun Liu, Qian Luo, Lisha Chang, Jie Ding, Yanan Xiao, Yangyang Zhang, Guoren Zhou, Keming Wang","doi":"10.1002/jgm.3636","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/β-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/β-catenin signalling pathway, promoting cell proliferation in CRC.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3636","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A.
Methods
The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/β-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay.
Results
The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/β-catenin signalling pathway, promoting cell proliferation in CRC.
Conclusions
Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.