{"title":"Quantitative Modeling of Stemness in Single-Cell RNA Sequencing Data: A Nonlinear One-Class Support Vector Machine Method.","authors":"Hao Jiang, Jingxin Liu, You Song, Jinzhi Lei","doi":"10.1089/cmb.2022.0484","DOIUrl":null,"url":null,"abstract":"<p><p>Intratumoral heterogeneity and the presence of cancer stem cells are challenging issues in cancer therapy. An appropriate quantification of the stemness of individual cells for assessing the potential for self-renewal and differentiation from the cell of origin can define a measurement for quantifying different cell states, which is important in understanding the dynamics of cancer evolution, and might further provide possible targeted therapies aimed at tumor stem cells. Nevertheless, it is usually difficult to quantify the stemness of a cell based on molecular information associated with the cell. In this study, we proposed a stemness definition method with one-class Hadamard kernel support vector machine (OCHSVM) based on single-cell RNA sequencing (scRNA-seq) data. Applications of the proposed OCHSVM stemness are assessed by various data sets, including preimplantation embryo cells, induced pluripotent stem cells, or tumor cells. We further compared the OCHSVM model with state-of-the-art methods CytoTRACE, one-class logistic regression, or one-class SVM methods with different kernels. The computational results demonstrate that the OCHSVM method is more suitable for stemness identification using scRNA-seq data.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"41-57"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2022.0484","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Intratumoral heterogeneity and the presence of cancer stem cells are challenging issues in cancer therapy. An appropriate quantification of the stemness of individual cells for assessing the potential for self-renewal and differentiation from the cell of origin can define a measurement for quantifying different cell states, which is important in understanding the dynamics of cancer evolution, and might further provide possible targeted therapies aimed at tumor stem cells. Nevertheless, it is usually difficult to quantify the stemness of a cell based on molecular information associated with the cell. In this study, we proposed a stemness definition method with one-class Hadamard kernel support vector machine (OCHSVM) based on single-cell RNA sequencing (scRNA-seq) data. Applications of the proposed OCHSVM stemness are assessed by various data sets, including preimplantation embryo cells, induced pluripotent stem cells, or tumor cells. We further compared the OCHSVM model with state-of-the-art methods CytoTRACE, one-class logistic regression, or one-class SVM methods with different kernels. The computational results demonstrate that the OCHSVM method is more suitable for stemness identification using scRNA-seq data.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases