Shi Cheng, Xiangning Xu, Ren Wang, Weijie Chen, Kunhan Qin, Jinglong Yan
{"title":"Chondroprotective effects of bone marrow mesenchymal stem cell-derived exosomes in osteoarthritis.","authors":"Shi Cheng, Xiangning Xu, Ren Wang, Weijie Chen, Kunhan Qin, Jinglong Yan","doi":"10.1007/s10863-023-09991-6","DOIUrl":null,"url":null,"abstract":"<p><p>Chondrocyte ferroptosis constitutes a major cause of the development of osteoarthritis (OA). Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have a protective role against ferroptosis in various diseases. Hence, we aimed to determine whether BMSC-Exos alleviated chondrocyte ferroptosis and its effect on OA, and to dissect out the possible mechanisms. An OA rat chondrocyte model was established by interleukin-1β (IL-1β) exposure, and treated with BMSC-Exos/ferroptosis inhibitor Ferrostatin-1. Cell viability/ferroptosis-related index levels [reactive oxygen species (ROS)/malondialdehyde (MDA)/glutathione (GSH)]/cell death/ACSL4 mRNA and protein levels and METTL3 levels were assessed by MTT/kits/immunohistochemical method and TUNEL staining/RT-qPCR and Western blot. METTL3/ACSL4 were overexpressed in rat chondrocytes to evaluate their role in BMSC-Exo-produced repression on chondrocyte ferroptosis. Bioinformatics website predicted the presence of m6A modification sites on ACSL4 mRNA, with the m6A level enriched on it assessed by MeRIP/RT-qPCR. ACSL4 mRNA stability was detected by actinomycin D assay. A surgical destabilized medial meniscus rat OA model was also established, followed by injection with BMSC-Exos to verify their function. IL-1β stimulation in rat chondrocytes inhibited cell viability, elevated Fe<sup>2+</sup>/ROS/MDA levels, declined GSH levels and increased TUNEL positive cell number and ACSL4 level, which were neutralized by BMSC-Exos. BMSC-Exos limited chondrocyte ferroptosis by down-regulating METTL3, with the effect abrogated by METTL3 overexpression. METTL3 regulated the m6A modification of ACSL4 mRNA, increasing ACSL4 mRNA stability and ACSL4 expression. BMSC-Exos reduced chondrocyte ferroptosis and prevented OA progression via disruption of the METTL3-m6A-ACSL4 axis. BMSC-Exos might exert a chondroprotective effect by attenuating chondrocyte ferroptosis and alleviate OA progression.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"31-44"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09991-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Chondrocyte ferroptosis constitutes a major cause of the development of osteoarthritis (OA). Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have a protective role against ferroptosis in various diseases. Hence, we aimed to determine whether BMSC-Exos alleviated chondrocyte ferroptosis and its effect on OA, and to dissect out the possible mechanisms. An OA rat chondrocyte model was established by interleukin-1β (IL-1β) exposure, and treated with BMSC-Exos/ferroptosis inhibitor Ferrostatin-1. Cell viability/ferroptosis-related index levels [reactive oxygen species (ROS)/malondialdehyde (MDA)/glutathione (GSH)]/cell death/ACSL4 mRNA and protein levels and METTL3 levels were assessed by MTT/kits/immunohistochemical method and TUNEL staining/RT-qPCR and Western blot. METTL3/ACSL4 were overexpressed in rat chondrocytes to evaluate their role in BMSC-Exo-produced repression on chondrocyte ferroptosis. Bioinformatics website predicted the presence of m6A modification sites on ACSL4 mRNA, with the m6A level enriched on it assessed by MeRIP/RT-qPCR. ACSL4 mRNA stability was detected by actinomycin D assay. A surgical destabilized medial meniscus rat OA model was also established, followed by injection with BMSC-Exos to verify their function. IL-1β stimulation in rat chondrocytes inhibited cell viability, elevated Fe2+/ROS/MDA levels, declined GSH levels and increased TUNEL positive cell number and ACSL4 level, which were neutralized by BMSC-Exos. BMSC-Exos limited chondrocyte ferroptosis by down-regulating METTL3, with the effect abrogated by METTL3 overexpression. METTL3 regulated the m6A modification of ACSL4 mRNA, increasing ACSL4 mRNA stability and ACSL4 expression. BMSC-Exos reduced chondrocyte ferroptosis and prevented OA progression via disruption of the METTL3-m6A-ACSL4 axis. BMSC-Exos might exert a chondroprotective effect by attenuating chondrocyte ferroptosis and alleviate OA progression.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.