{"title":"Brain-derived neurotrophic factor (BDNF) downregulates mRNA levels of suppressor of cancer cell invasion (SCAI) variants in cortical neurons","authors":"Daisuke Ihara, Miho Mizukoshi, Akiko Tabuchi","doi":"10.1111/gtc.13086","DOIUrl":null,"url":null,"abstract":"<p>Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of <i>SCAI</i> is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter <i>SCAI</i> mRNA levels. We therefore investigated the effects of BDNF on <i>SCAI</i> mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured <i>SCAI</i> variant mRNA after BDNF stimulation. Both <i>SCAI</i> variant 1 and total <i>SCAI</i> mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in <i>SCAI</i> mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes <i>SCAI</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of SCAI is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter SCAI mRNA levels. We therefore investigated the effects of BDNF on SCAI mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured SCAI variant mRNA after BDNF stimulation. Both SCAI variant 1 and total SCAI mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in SCAI mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes SCAI.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.