DistSNE: Distributed computing and online visualization of DNA methylation-based central nervous system tumor classification

IF 5.8 2区 医学 Q1 CLINICAL NEUROLOGY
Brain Pathology Pub Date : 2023-11-27 DOI:10.1111/bpa.13228
Kai Schmid, Jannik Sehring, Attila Németh, Patrick N. Harter, Katharina J. Weber, Abishaa Vengadeswaran, Holger Storf, Christian Seidemann, Kapil Karki, Patrick Fischer, Hildegard Dohmen, Carmen Selignow, Andreas von Deimling, Stefan Grau, Uwe Schröder, Karl H. Plate, Marco Stein, Eberhard Uhl, Till Acker, Daniel Amsel
{"title":"DistSNE: Distributed computing and online visualization of DNA methylation-based central nervous system tumor classification","authors":"Kai Schmid,&nbsp;Jannik Sehring,&nbsp;Attila Németh,&nbsp;Patrick N. Harter,&nbsp;Katharina J. Weber,&nbsp;Abishaa Vengadeswaran,&nbsp;Holger Storf,&nbsp;Christian Seidemann,&nbsp;Kapil Karki,&nbsp;Patrick Fischer,&nbsp;Hildegard Dohmen,&nbsp;Carmen Selignow,&nbsp;Andreas von Deimling,&nbsp;Stefan Grau,&nbsp;Uwe Schröder,&nbsp;Karl H. Plate,&nbsp;Marco Stein,&nbsp;Eberhard Uhl,&nbsp;Till Acker,&nbsp;Daniel Amsel","doi":"10.1111/bpa.13228","DOIUrl":null,"url":null,"abstract":"<p>The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 3","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bpa.13228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.

Abstract Image

Abstract Image

分布式计算和基于DNA甲基化的中枢神经系统肿瘤分类的在线可视化。
目前通过DNA甲基化分析中枢神经系统(CNS)肿瘤的最先进的分析依赖于Capper及其同事开发的肿瘤分类器,该分类器集中利用用户提供的DNA甲基化数据。在这里,我们提出了一种基于分布式计算的中枢神经系统肿瘤分类方法,在保护隐私的同时实现了与集中式系统相当的性能。我们利用t分布邻域嵌入(t-SNE)模型在二维图中以跨多个站点的分布式方法进行肿瘤分类结果的降维和可视化(DistSNE)。DistSNE提供了一个直观的web界面(https://gin-tsne.med.uni-giessen.de),用于用户友好的本地数据管理和基于甲基组的联合肿瘤分类计算,用于DataSHIELD环境中的多个合作者。自由访问的web界面支持方便的数据上传,结果审查和汇总报告生成。重要的是,通过分布式访问其他数据集来增加样本量,使DistSNE能够改进聚类分析并增强预测能力。总的来说,DistSNE可以使用来自分布式来源的大规模甲基化数据对中枢神经系统肿瘤进行简单快速的分类,同时保持隐私,并允许轻松灵活的网络扩展到其他机构。这种方法在推进人类脑肿瘤分类和促进神经肿瘤学的协作精准医学方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Pathology
Brain Pathology 医学-病理学
CiteScore
13.20
自引率
3.10%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信