A Characterization of Graphs Whose Small Powers of Their Edge Ideals Have a Linear Free Resolution

IF 1 2区 数学 Q1 MATHEMATICS
Nguyen Cong Minh, Thanh Vu
{"title":"A Characterization of Graphs Whose Small Powers of Their Edge Ideals Have a Linear Free Resolution","authors":"Nguyen Cong Minh, Thanh Vu","doi":"10.1007/s00493-023-00074-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>I</i>(<i>G</i>) be the edge ideal of a simple graph <i>G</i>. We prove that <span>\\(I(G)^2\\)</span> has a linear free resolution if and only if <i>G</i> is gap-free and <span>\\({{\\,\\textrm{reg}\\,}}I(G) \\le 3\\)</span>. Similarly, we show that <span>\\(I(G)^3\\)</span> has a linear free resolution if and only if <i>G</i> is gap-free and <span>\\({{\\,\\textrm{reg}\\,}}I(G) \\le 4\\)</span>. We deduce these characterizations by establishing a general formula for the regularity of powers of edge ideals of gap-free graphs <span>\\({{\\,\\textrm{reg}\\,}}(I(G)^s) = \\max ({{\\,\\textrm{reg}\\,}}I(G) + s-1,2s)\\)</span>, for <span>\\(s =2,3\\)</span>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"97 30","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00074-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let I(G) be the edge ideal of a simple graph G. We prove that \(I(G)^2\) has a linear free resolution if and only if G is gap-free and \({{\,\textrm{reg}\,}}I(G) \le 3\). Similarly, we show that \(I(G)^3\) has a linear free resolution if and only if G is gap-free and \({{\,\textrm{reg}\,}}I(G) \le 4\). We deduce these characterizations by establishing a general formula for the regularity of powers of edge ideals of gap-free graphs \({{\,\textrm{reg}\,}}(I(G)^s) = \max ({{\,\textrm{reg}\,}}I(G) + s-1,2s)\), for \(s =2,3\).

图的小幂边理想具有线性自由分辨率的刻画
设I(G)为简单图G的边理想,证明\(I(G)^2\)具有线性自由分辨率当且仅当G无间隙且\({{\,\textrm{reg}\,}}I(G) \le 3\)。类似地,我们证明\(I(G)^3\)具有线性自由分辨率当且仅当G无间隙且\({{\,\textrm{reg}\,}}I(G) \le 4\)。我们通过建立无间隙图的边理想的幂的正则性的一般公式\({{\,\textrm{reg}\,}}(I(G)^s) = \max ({{\,\textrm{reg}\,}}I(G) + s-1,2s)\)来推导这些特征,对于\(s =2,3\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信