{"title":"The shirker’s dilemma and the prospect of cooperation in large groups","authors":"Jorge Peña , Aviad Heifetz , Georg Nöldeke","doi":"10.1016/j.tpb.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Cooperation usually becomes harder to sustain as groups become larger because incentives to shirk increase with the number of potential contributors to collective action. But is this always the case? Here we study a binary-action cooperative dilemma where a public good is provided as long as not more than a given number of players shirk from a costly cooperative task. We find that at the stable polymorphic equilibrium, which exists when the cost of cooperation is low enough, the probability of cooperating increases with group size and reaches a limit of one when the group size tends to infinity. Nevertheless, increasing the group size may increase or decrease the probability that the public good is provided at such an equilibrium, depending on the cost value. We also prove that the expected payoff to individuals at the stable polymorphic equilibrium (i.e., their fitness) decreases with group size. For low enough costs of cooperation, both the probability of provision of the public good and the expected payoff converge to positive values in the limit of large group sizes. However, we also find that the basin of attraction of the stable polymorphic equilibrium is a decreasing function of group size and shrinks to zero in the limit of very large groups. Overall, we demonstrate non-trivial comparative statics with respect to group size in an otherwise simple collective action problem.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580923000643","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperation usually becomes harder to sustain as groups become larger because incentives to shirk increase with the number of potential contributors to collective action. But is this always the case? Here we study a binary-action cooperative dilemma where a public good is provided as long as not more than a given number of players shirk from a costly cooperative task. We find that at the stable polymorphic equilibrium, which exists when the cost of cooperation is low enough, the probability of cooperating increases with group size and reaches a limit of one when the group size tends to infinity. Nevertheless, increasing the group size may increase or decrease the probability that the public good is provided at such an equilibrium, depending on the cost value. We also prove that the expected payoff to individuals at the stable polymorphic equilibrium (i.e., their fitness) decreases with group size. For low enough costs of cooperation, both the probability of provision of the public good and the expected payoff converge to positive values in the limit of large group sizes. However, we also find that the basin of attraction of the stable polymorphic equilibrium is a decreasing function of group size and shrinks to zero in the limit of very large groups. Overall, we demonstrate non-trivial comparative statics with respect to group size in an otherwise simple collective action problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.