Functions with Bounded Hessian–Schatten Variation: Density, Variational, and Extremality Properties

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luigi Ambrosio, Camillo Brena, Sergio Conti
{"title":"Functions with Bounded Hessian–Schatten Variation: Density, Variational, and Extremality Properties","authors":"Luigi Ambrosio,&nbsp;Camillo Brena,&nbsp;Sergio Conti","doi":"10.1007/s00205-023-01938-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we analyze in detail a few questions related to the theory of functions with bounded <i>p</i>-Hessian–Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the <i>p</i>-Hessian–Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension <i>d</i>, using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the <i>p</i>-Hessian–Schatten total variation are CPWL. Finally, we prove the existence of minimizers of certain relevant functionals involving the <i>p</i>-Hessian–Schatten total variation in the critical dimension <span>\\(d=2\\)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01938-w.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01938-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we analyze in detail a few questions related to the theory of functions with bounded p-Hessian–Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the p-Hessian–Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension d, using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the p-Hessian–Schatten total variation are CPWL. Finally, we prove the existence of minimizers of certain relevant functionals involving the p-Hessian–Schatten total variation in the critical dimension \(d=2\).

Abstract Image

有界Hessian-Schatten变分函数:密度、变分和极值性质
本文详细分析了有界p-Hessian-Schatten全变分函数理论中与逆问题理论和机器学习相关的几个问题。我们证明了一个最优的密度结果,相对于p-Hessian-Schatten总变分,连续分段线性(CPWL)函数在任何空间维d中,使用基于网格的结构,其局部方向适应于要逼近的函数。我们证明了并非所有关于p-Hessian-Schatten总变差的极值函数都是CPWL。最后,我们证明了在临界维\(d=2\)上涉及p-Hessian-Schatten总变分的某些相关泛函的极小值的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信