{"title":"Thiol involvement in the inhibition of DNA repair by metals in mammalian cells.","authors":"R D Snyder, P J Lachmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously demonstrated that a number of metal salts have the capacity to inhibit the DNA repair process in human cells. In order to determine a role for non-protein thiols (TNPT) in this inhibition, we investigated repair of X-ray damage in metal-treated HeLa cells under normal conditions and conditions in which cellular thiols had been depleted by treatment with buthionine sulfoximine (BSO) and diethyl maleate (DEM). The combination reduced cellular TNPT by 92%, and cells so depleted became sensitized to X-ray-induced killing and exhibited retarded sealing of X-ray-induced DNA single-strand breaks. Thiol depletion also sensitized cells to the cytotoxicity of certain but not all metals tested. The sensitivity to copper was increased over 6000-fold, and significant enhancement of killing was also seen in cells treated with arsenic, lead, and mercury. Smaller effects were observed with cadmium and nickel, and sensitivity to manganese, magnesium, cobalt or zinc was not substantially altered. Enhanced sensitivity to X-ray killing was found in cells treated with nickel, cadmium, zinc, arsenic, and copper under conditions in which thiols were not limiting. In thiol-depleted cells, sensitivity was not further increased in the case of nickel and arsenic but at least additively affected for copper, mercury and zinc. X-Ray-induced single-strand break repair was retarded by treatment of cells with mercury, nickel, zinc, arsenic, and copper in thiol-normal cells. In thiol-depleted cells, repair inhibition by zinc, arsenic, and copper was nearly complete, while little additional effect on repair was seen following mercury and nickel treatment. An examination of the effects of brief metal treatment on cellular TNPT revealed that copper strongly decreased thiol levels whereas the other metals tested either had no effect on TNPT or reduced TNPT levels to no less than 48% under the conditions employed. No simple relationship appears to exist relating loss of cellular thiols and sensitivity of repair in the series of metals tested. Clear, although indirect, evidence exists, however, that sensitivity to X-rays is mediated through thiols and that the interaction of metals and thiols in the cell may be an important factor in modulating the response to irradiation.</p>","PeriodicalId":77750,"journal":{"name":"Molecular toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1989-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously demonstrated that a number of metal salts have the capacity to inhibit the DNA repair process in human cells. In order to determine a role for non-protein thiols (TNPT) in this inhibition, we investigated repair of X-ray damage in metal-treated HeLa cells under normal conditions and conditions in which cellular thiols had been depleted by treatment with buthionine sulfoximine (BSO) and diethyl maleate (DEM). The combination reduced cellular TNPT by 92%, and cells so depleted became sensitized to X-ray-induced killing and exhibited retarded sealing of X-ray-induced DNA single-strand breaks. Thiol depletion also sensitized cells to the cytotoxicity of certain but not all metals tested. The sensitivity to copper was increased over 6000-fold, and significant enhancement of killing was also seen in cells treated with arsenic, lead, and mercury. Smaller effects were observed with cadmium and nickel, and sensitivity to manganese, magnesium, cobalt or zinc was not substantially altered. Enhanced sensitivity to X-ray killing was found in cells treated with nickel, cadmium, zinc, arsenic, and copper under conditions in which thiols were not limiting. In thiol-depleted cells, sensitivity was not further increased in the case of nickel and arsenic but at least additively affected for copper, mercury and zinc. X-Ray-induced single-strand break repair was retarded by treatment of cells with mercury, nickel, zinc, arsenic, and copper in thiol-normal cells. In thiol-depleted cells, repair inhibition by zinc, arsenic, and copper was nearly complete, while little additional effect on repair was seen following mercury and nickel treatment. An examination of the effects of brief metal treatment on cellular TNPT revealed that copper strongly decreased thiol levels whereas the other metals tested either had no effect on TNPT or reduced TNPT levels to no less than 48% under the conditions employed. No simple relationship appears to exist relating loss of cellular thiols and sensitivity of repair in the series of metals tested. Clear, although indirect, evidence exists, however, that sensitivity to X-rays is mediated through thiols and that the interaction of metals and thiols in the cell may be an important factor in modulating the response to irradiation.