{"title":"ROSE: A neurocomputational architecture for syntax","authors":"Elliot Murphy","doi":"10.1016/j.jneuroling.2023.101180","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive neural model of language must accommodate four components: representations, operations, structures and encoding. Recent intracranial research has begun to map out the feature space associated with syntactic processes, but the field lacks a unified framework that can direct invasive neural analyses. This article proposes a neurocomputational architecture for syntax, termed ROSE (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Operations (O) transforming these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive structural inferences (S). Distinct forms of low frequency coupling encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E are frontotemporal traveling oscillations. ROSE is reliant on neurophysiologically plausible mechanisms and provides an anatomically precise and falsifiable grounding for natural language syntax.</p></div>","PeriodicalId":50118,"journal":{"name":"Journal of Neurolinguistics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurolinguistics","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S091160442300057X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive neural model of language must accommodate four components: representations, operations, structures and encoding. Recent intracranial research has begun to map out the feature space associated with syntactic processes, but the field lacks a unified framework that can direct invasive neural analyses. This article proposes a neurocomputational architecture for syntax, termed ROSE (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Operations (O) transforming these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive structural inferences (S). Distinct forms of low frequency coupling encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E are frontotemporal traveling oscillations. ROSE is reliant on neurophysiologically plausible mechanisms and provides an anatomically precise and falsifiable grounding for natural language syntax.
期刊介绍:
The Journal of Neurolinguistics is an international forum for the integration of the neurosciences and language sciences. JNL provides for rapid publication of novel, peer-reviewed research into the interaction between language, communication and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in communication and its breakdowns. Contributions from neurology, communication disorders, linguistics, neuropsychology and cognitive science in general are welcome. Published articles will typically address issues relating some aspect of language or speech function to its neurological substrates with clear theoretical import. Interdisciplinary work on any aspect of the biological foundations of language and its disorders resulting from brain damage is encouraged. Studies of normal subjects, with clear reference to brain functions, are appropriate. Group-studies on well defined samples and case studies with well documented lesion or nervous system dysfunction are acceptable. The journal is open to empirical reports and review articles. Special issues on aspects of the relation between language and the structure and function of the nervous system are also welcome.