Plasma modification of graphene nanoplatelets surfaces

IF 4.703 3区 材料科学
Tyler Johnson, Keliang Wang, Qi Hua Fan, Andre Lee
{"title":"Plasma modification of graphene nanoplatelets surfaces","authors":"Tyler Johnson,&nbsp;Keliang Wang,&nbsp;Qi Hua Fan,&nbsp;Andre Lee","doi":"10.1186/s11671-023-03929-y","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric plasma processing, which combines the efficacy of chemical processes and the safety of physical processes, has been used to modify the surface characteristics of graphite-based materials. In this work, two distinct plasma source gases, C<sub>4</sub>F<sub>8</sub> and O<sub>2</sub>, with the addition of a rotary reactor were used. The effectiveness of modifying the basal plane of intercalated graphite nanoplatelets (GnP) was investigated with various analytical techniques and the visual observation of the dispersion of these plasma-treated GnP in solvents was also reported. It is shown that this low-temperature plasma processing technique can be used to successfully modify the GnP surface without significantly changing the intrinsic structure of the GnP, which is desirable in many applications. With the C<sub>4</sub>F<sub>8</sub> plasma treatment, the immersion characteristics in solvents can be tuned and the functional groups present on the surface can be tailored to produce desired bonding environments. This surface chemistry tunability will provide the needed functionalities in creating graphene-containing composite materials.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03929-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric plasma processing, which combines the efficacy of chemical processes and the safety of physical processes, has been used to modify the surface characteristics of graphite-based materials. In this work, two distinct plasma source gases, C4F8 and O2, with the addition of a rotary reactor were used. The effectiveness of modifying the basal plane of intercalated graphite nanoplatelets (GnP) was investigated with various analytical techniques and the visual observation of the dispersion of these plasma-treated GnP in solvents was also reported. It is shown that this low-temperature plasma processing technique can be used to successfully modify the GnP surface without significantly changing the intrinsic structure of the GnP, which is desirable in many applications. With the C4F8 plasma treatment, the immersion characteristics in solvents can be tuned and the functional groups present on the surface can be tailored to produce desired bonding environments. This surface chemistry tunability will provide the needed functionalities in creating graphene-containing composite materials.

Abstract Image

石墨烯纳米片表面的等离子体修饰。
大气等离子体处理结合了化学处理的有效性和物理处理的安全性,已被用于改性石墨基材料的表面特性。在这项工作中,使用了两种不同的等离子体源气体,C4F8和O2,并添加了旋转反应器。用各种分析技术研究了修饰嵌入石墨纳米片基底面的有效性,并报道了等离子体处理的嵌入石墨纳米片在溶剂中的分散情况。结果表明,这种低温等离子体处理技术可以成功地修饰GnP表面,而不会显著改变GnP的内在结构,这在许多应用中是理想的。通过C4F8等离子体处理,可以调整溶剂中的浸泡特性,并且可以定制表面上存在的官能团,以产生所需的键合环境。这种表面化学的可调性将为制造含石墨烯的复合材料提供所需的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信