Danya Zhou, Ye Zhang, Mengting Zhu, Xiaojun Zhang, Xiaojuan Zhang, Junyao Lv, Wanting Tang, Qi Weng, Yang Lin, Lejun Tong, Zhiwei Zhong, Yanmei Zhang, Mengxuan Zhang, Minchao Lai, Dian Wang
{"title":"mROS‑calcium feedback loop promotes lethal ventricular arrhythmias and sudden cardiac death in early myocardial ischemia.","authors":"Danya Zhou, Ye Zhang, Mengting Zhu, Xiaojun Zhang, Xiaojuan Zhang, Junyao Lv, Wanting Tang, Qi Weng, Yang Lin, Lejun Tong, Zhiwei Zhong, Yanmei Zhang, Mengxuan Zhang, Minchao Lai, Dian Wang","doi":"10.3892/ijmm.2023.5329","DOIUrl":null,"url":null,"abstract":"<p><p>Lethal ventricular arrhythmia‑sudden cardiac death (LVA‑SCD) occurs frequently during the early stage of myocardial ischemia (MI). However, the mechanism underlying higher LVA‑SCD incidence is still poorly understood. The present study aimed to explore the role of mitochondrial reactive oxygen species (mROS) and Ca<sup>2+</sup> crosstalk in promoting LVA‑SCD in early MI. RyR2 S2814A mice and their wild‑type littermates were used. MitoTEMPO was applied to scavenge mitochondrial ROS (mROS). Mice were subjected to severe MI and the occurrence of LVA‑SCD was evaluated. Levels of mitochondrial ROS and calcium (mitoCa<sup>2+</sup>), cytosolic ROS (cytoROS), and calcium (cytoCa<sup>2+</sup>), RyR2 Ser‑2814 phosphorylation, CaMKII Met‑282 oxidation, mitochondrial membrane potential (MMP), and glutathione/oxidized glutathione (GSH/GSSG) ratio in the myocardia were detected. Dynamic changes in mROS after hypoxia were investigated using H9c2 cells. Moreover, the myocardial phosphoproteome was analyzed to explore the related mechanisms facilitating mROS‑Ca<sup>2+</sup> crosstalk and LVA‑SCD. There was a high incidence (~33.9%) of LVA‑SCD in early MI. Mice who underwent SCD displayed notably elevated levels of myocardial ROS and mROS, and the latter was validated in H9c2 cells. These mice also demonstrated overloads of cytoplasmic and mitochondrial Ca<sup>2+</sup>, decreased MMP and reduced GSH/GSSG ratio, upregulated RyR2‑S2814 phosphorylation and CaMKII‑M282 oxidation and transient hyperphosphorylation of mitochondrial proteomes in the myocardium. mROS‑specific scavenging by a mitochondria‑targeted antioxidant agent (MitoTEMPO) corrected these SCD‑induced alterations. S2814A mice with a genetically inactivated CaMKII phosphorylation site in RyR2 exhibited decreased overloads in cytoplasmic and mitochondrial Ca<sup>2+</sup> and demonstrated similar effects as MitoTEMPO to correct SCD‑induced changes and prevent SCD post‑MI. The data confirmed crosstalk between mROS and Ca2+ in promoting LVA‑SCD. Therefore, we provided evidence that there is a higher incidence of LVA‑SCD in early MI, which may be attributed to a positive feedback loop between mROS and Ca<sup>2+</sup> imbalance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2023.5329","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lethal ventricular arrhythmia‑sudden cardiac death (LVA‑SCD) occurs frequently during the early stage of myocardial ischemia (MI). However, the mechanism underlying higher LVA‑SCD incidence is still poorly understood. The present study aimed to explore the role of mitochondrial reactive oxygen species (mROS) and Ca2+ crosstalk in promoting LVA‑SCD in early MI. RyR2 S2814A mice and their wild‑type littermates were used. MitoTEMPO was applied to scavenge mitochondrial ROS (mROS). Mice were subjected to severe MI and the occurrence of LVA‑SCD was evaluated. Levels of mitochondrial ROS and calcium (mitoCa2+), cytosolic ROS (cytoROS), and calcium (cytoCa2+), RyR2 Ser‑2814 phosphorylation, CaMKII Met‑282 oxidation, mitochondrial membrane potential (MMP), and glutathione/oxidized glutathione (GSH/GSSG) ratio in the myocardia were detected. Dynamic changes in mROS after hypoxia were investigated using H9c2 cells. Moreover, the myocardial phosphoproteome was analyzed to explore the related mechanisms facilitating mROS‑Ca2+ crosstalk and LVA‑SCD. There was a high incidence (~33.9%) of LVA‑SCD in early MI. Mice who underwent SCD displayed notably elevated levels of myocardial ROS and mROS, and the latter was validated in H9c2 cells. These mice also demonstrated overloads of cytoplasmic and mitochondrial Ca2+, decreased MMP and reduced GSH/GSSG ratio, upregulated RyR2‑S2814 phosphorylation and CaMKII‑M282 oxidation and transient hyperphosphorylation of mitochondrial proteomes in the myocardium. mROS‑specific scavenging by a mitochondria‑targeted antioxidant agent (MitoTEMPO) corrected these SCD‑induced alterations. S2814A mice with a genetically inactivated CaMKII phosphorylation site in RyR2 exhibited decreased overloads in cytoplasmic and mitochondrial Ca2+ and demonstrated similar effects as MitoTEMPO to correct SCD‑induced changes and prevent SCD post‑MI. The data confirmed crosstalk between mROS and Ca2+ in promoting LVA‑SCD. Therefore, we provided evidence that there is a higher incidence of LVA‑SCD in early MI, which may be attributed to a positive feedback loop between mROS and Ca2+ imbalance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.