{"title":"Homologous recombination deficiency reflects the heterogeneity and monitoring treatment response for patients with breast cancer","authors":"Quanyi Long, Yunfei Wang, Hongjiang Li","doi":"10.1002/jgm.3637","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>In breast cancer (BC), homologous recombination defect (HRD) is a common carcinogenic mechanism. It is meaningful to classify BC according to HRD biomarkers and to develop a platform for identifying BC molecular features, pathological features and therapeutic responses.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In total, 109 HRD genes were collected and screened by univariate Cox regression analysis to determine the prognostic genes, which were used to construct a consensus matrix to identify BC subtype. Differentially expressed genes (DEGs) were filtered by the Limma package and screened by random forest analysis to build a model to analyze the immunotherapy response and sensitivity and prognosis of patients suffering from BC to different drugs.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Thirteen out of 109 HRD genes were prognostic genes of BC, and BC was classified into two subgroups based on their expression. Cluster 1 had a significantly backward survival outcome and a significantly higher adaptive immunity score relative to cluster 2. Six genes were identified by random forest analysis as factors for developing the model. The model provided a prediction called risk score, which showed a significant stratification effect on BC prognosis, immunotherapy response and IC<sub>50</sub> values of 62 drugs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>In the present study, two HRD subtypes of BC were successfully identified, for which mutation and immunological features were determined. A model based on differential genes of HRD subtypes was established, which was a potential predictor of prognosis, immunotherapy response and drug sensitivity of BC.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3637","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In breast cancer (BC), homologous recombination defect (HRD) is a common carcinogenic mechanism. It is meaningful to classify BC according to HRD biomarkers and to develop a platform for identifying BC molecular features, pathological features and therapeutic responses.
Methods
In total, 109 HRD genes were collected and screened by univariate Cox regression analysis to determine the prognostic genes, which were used to construct a consensus matrix to identify BC subtype. Differentially expressed genes (DEGs) were filtered by the Limma package and screened by random forest analysis to build a model to analyze the immunotherapy response and sensitivity and prognosis of patients suffering from BC to different drugs.
Results
Thirteen out of 109 HRD genes were prognostic genes of BC, and BC was classified into two subgroups based on their expression. Cluster 1 had a significantly backward survival outcome and a significantly higher adaptive immunity score relative to cluster 2. Six genes were identified by random forest analysis as factors for developing the model. The model provided a prediction called risk score, which showed a significant stratification effect on BC prognosis, immunotherapy response and IC50 values of 62 drugs.
Conclusions
In the present study, two HRD subtypes of BC were successfully identified, for which mutation and immunological features were determined. A model based on differential genes of HRD subtypes was established, which was a potential predictor of prognosis, immunotherapy response and drug sensitivity of BC.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.