Bounding the total forcing number of graphs

Pub Date : 2023-11-16 DOI:10.1007/s10878-023-01089-4
Shengjin Ji, Mengya He, Guang Li, Yingui Pan, Wenqian Zhang
{"title":"Bounding the total forcing number of graphs","authors":"Shengjin Ji, Mengya He, Guang Li, Yingui Pan, Wenqian Zhang","doi":"10.1007/s10878-023-01089-4","DOIUrl":null,"url":null,"abstract":"<p>In recent years, a dynamic coloring, named as zero forcing, of the vertices in a graph have attracted many researchers. For a given <i>G</i> and a vertex subset <i>S</i>, assigning each vertex of <i>S</i> black and each vertex of <span>\\(V\\setminus S\\)</span> no color, if one vertex <span>\\(u\\in S\\)</span> has a unique neighbor <i>v</i> in <span>\\(V\\setminus S\\)</span>, then <i>u</i> forces <i>v</i> to color black. <i>S</i> is called a zero forcing set if <i>S</i> can be expanded to the entire vertex set <i>V</i> by repeating the above forcing process. <i>S</i> is regarded as a total forcing set if the subgraph <i>G</i>[<i>S</i>] satisfies <span>\\(\\delta (G[S])\\ge 1\\)</span>. The minimum cardinality of a total forcing set in <i>G</i>, denoted by <span>\\(F_t(G)\\)</span>, is named the total forcing number of <i>G</i>. For a graph <i>G</i>, <i>p</i>(<i>G</i>), <i>q</i>(<i>G</i>) and <span>\\(\\phi (G)\\)</span> denote the number of pendant vertices, the number of vertices with degree at least 3 meanwhile having one pendant path and the cyclomatic number of <i>G</i>, respectively. In the paper, by means of the total forcing set of a spanning tree regarding a graph <i>G</i>, we verify that <span>\\(F_t(G)\\le p(G)+q(G)+2\\phi (G)\\)</span>. Furthermore, all graphs achieving the equality are determined.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-023-01089-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, a dynamic coloring, named as zero forcing, of the vertices in a graph have attracted many researchers. For a given G and a vertex subset S, assigning each vertex of S black and each vertex of \(V\setminus S\) no color, if one vertex \(u\in S\) has a unique neighbor v in \(V\setminus S\), then u forces v to color black. S is called a zero forcing set if S can be expanded to the entire vertex set V by repeating the above forcing process. S is regarded as a total forcing set if the subgraph G[S] satisfies \(\delta (G[S])\ge 1\). The minimum cardinality of a total forcing set in G, denoted by \(F_t(G)\), is named the total forcing number of G. For a graph G, p(G), q(G) and \(\phi (G)\) denote the number of pendant vertices, the number of vertices with degree at least 3 meanwhile having one pendant path and the cyclomatic number of G, respectively. In the paper, by means of the total forcing set of a spanning tree regarding a graph G, we verify that \(F_t(G)\le p(G)+q(G)+2\phi (G)\). Furthermore, all graphs achieving the equality are determined.

Abstract Image

分享
查看原文
限制图形的强制总数
近年来,图中顶点的零强迫动态着色引起了许多研究者的关注。对于给定的G和顶点子集S,将S的每个顶点赋为黑色,将\(V\setminus S\)的每个顶点赋为无颜色,如果一个顶点\(u\in S\)在\(V\setminus S\)中有唯一的邻居v,则u强制v为黑色。如果S可以通过重复上述强迫过程扩展到整个顶点集V,则S称为零强迫集。如果子图G[S]满足\(\delta (G[S])\ge 1\),则将S视为总强迫集。对于图G, p(G)、q(G)和\(\phi (G)\)分别表示垂顶点数、至少有3度且有一条垂路径的顶点数和G的圈数,其中总强迫集的最小基数表示为\(F_t(G)\),称为G的总强迫数。本文利用生成树关于图G的总强迫集,验证了\(F_t(G)\le p(G)+q(G)+2\phi (G)\)。进而确定所有达到等式的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信