Identifying a locus in super-enhancer and its resident NFE2L1/MAFG as transcriptional factors that drive PD-L1 expression and immune evasion.

IF 5.9 2区 医学 Q1 ONCOLOGY
Conglin Shi, Liuting Chen, Hui Pi, Henglu Cui, Chenyang Fan, Fangzheng Tan, Xuanhao Qu, Rong Sun, Fengbo Zhao, Yihua Song, Yuanyuan Wu, Miaomiao Chen, Wenkai Ni, Lishuai Qu, Renfang Mao, Yihui Fan
{"title":"Identifying a locus in super-enhancer and its resident NFE2L1/MAFG as transcriptional factors that drive PD-L1 expression and immune evasion.","authors":"Conglin Shi, Liuting Chen, Hui Pi, Henglu Cui, Chenyang Fan, Fangzheng Tan, Xuanhao Qu, Rong Sun, Fengbo Zhao, Yihua Song, Yuanyuan Wu, Miaomiao Chen, Wenkai Ni, Lishuai Qu, Renfang Mao, Yihui Fan","doi":"10.1038/s41389-023-00500-3","DOIUrl":null,"url":null,"abstract":"<p><p>Although the transcriptional regulation of the programmed death ligand 1 (PD-L1) promoter has been extensively studied, the transcription factor residing in the PD-L1 super-enhancer has not been comprehensively explored. Through saturated CRISPR-Cas9 screening of the core region of the PD-L1 super-enhancer, we have identified a crucial genetic locus, referred to as locus 22, which is essential for PD-L1 expression. Locus 22 is a potential binding site for NFE2:MAF transcription factors. Although genetic silencing of NRF2 (NFE2L2) did not result in a reduction of PD-L1 expression, further analysis reveals that MAFG and NFE2L1 (NRF1) play a critical role in the expression of PD-L1. Importantly, lipopolysaccharides (LPS) as the major component of intratumoral bacteria could greatly induce PD-L1 expression, which is dependent on the PD-L1 super-enhancer, locus 22, and NFE2L1/MAFG. Mechanistically, genetic modification of locus 22 and silencing of MAFG greatly reduce BRD4 binding and loop formation but have minimal effects on H3K27Ac modification. Unlike control cells, cells with genetic modification of locus 22 and silencing of NFE2L1/MAFG failed to escape T cell-mediated killing. In breast cancer, the expression of MAFG is positively correlated with the expression of PD-L1. Taken together, our findings demonstrate the critical role of locus 22 and its associated transcription factor NFE2L1/MAFG in super-enhancer- and LPS-induced PD-L1 expression. Our findings provide new insight into understanding the regulation of PD-L1 transcription and intratumoral bacteria-mediated immune evasion.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"56"},"PeriodicalIF":5.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-023-00500-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the transcriptional regulation of the programmed death ligand 1 (PD-L1) promoter has been extensively studied, the transcription factor residing in the PD-L1 super-enhancer has not been comprehensively explored. Through saturated CRISPR-Cas9 screening of the core region of the PD-L1 super-enhancer, we have identified a crucial genetic locus, referred to as locus 22, which is essential for PD-L1 expression. Locus 22 is a potential binding site for NFE2:MAF transcription factors. Although genetic silencing of NRF2 (NFE2L2) did not result in a reduction of PD-L1 expression, further analysis reveals that MAFG and NFE2L1 (NRF1) play a critical role in the expression of PD-L1. Importantly, lipopolysaccharides (LPS) as the major component of intratumoral bacteria could greatly induce PD-L1 expression, which is dependent on the PD-L1 super-enhancer, locus 22, and NFE2L1/MAFG. Mechanistically, genetic modification of locus 22 and silencing of MAFG greatly reduce BRD4 binding and loop formation but have minimal effects on H3K27Ac modification. Unlike control cells, cells with genetic modification of locus 22 and silencing of NFE2L1/MAFG failed to escape T cell-mediated killing. In breast cancer, the expression of MAFG is positively correlated with the expression of PD-L1. Taken together, our findings demonstrate the critical role of locus 22 and its associated transcription factor NFE2L1/MAFG in super-enhancer- and LPS-induced PD-L1 expression. Our findings provide new insight into understanding the regulation of PD-L1 transcription and intratumoral bacteria-mediated immune evasion.

Abstract Image

鉴定超级增强子中的一个位点及其驻留的NFE2L1/MAFG作为驱动PD-L1表达和免疫逃避的转录因子。
尽管程序性死亡配体1 (PD-L1)启动子的转录调控已被广泛研究,但驻留在PD-L1超增强子中的转录因子尚未被全面探索。通过饱和CRISPR-Cas9筛选PD-L1超增强子的核心区域,我们已经确定了一个至关重要的遗传位点,称为位点22,它对PD-L1的表达至关重要。基因座22是NFE2:MAF转录因子的潜在结合位点。虽然NRF2 (NFE2L2)的基因沉默不会导致PD-L1表达的降低,但进一步的分析表明,MAFG和NFE2L1 (NRF1)在PD-L1的表达中起着关键作用。重要的是,脂多糖(LPS)作为肿瘤内细菌的主要成分可以极大地诱导PD-L1的表达,而PD-L1的表达依赖于PD-L1超增强子、位点22和NFE2L1/MAFG。从机制上看,22号位点的遗传修饰和MAFG的沉默极大地减少了BRD4的结合和环的形成,但对H3K27Ac修饰的影响很小。与对照细胞不同,基因修改22位点并沉默NFE2L1/MAFG的细胞无法逃脱T细胞介导的杀伤。在乳腺癌中,MAFG的表达与PD-L1的表达呈正相关。综上所述,我们的研究结果证明了基因座22及其相关转录因子NFE2L1/MAFG在超增强子和脂多糖诱导的PD-L1表达中的关键作用。我们的发现为理解PD-L1转录调控和肿瘤内细菌介导的免疫逃避提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信