On a group extension involving the Suzuki group Sz(8)

IF 0.9 Q2 MATHEMATICS
Ayoub B. M. Basheer
{"title":"On a group extension involving the Suzuki group Sz(8)","authors":"Ayoub B. M. Basheer","doi":"10.1007/s13370-023-01130-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Suzuki simple group <i>Sz</i>(8) has an automorphism group 3. Using the electronic Atlas [22], the group <i>Sz</i>(8) : 3 has an absolutely irreducible module of dimension 12 over <span>\\({\\mathbb {F}}_{2}.\\)</span> Therefore a split extension group of the form <span>\\(2^{12}{:}(Sz(8){:}3):= {\\overline{G}}\\)</span> exists. In this paper we study this group, where we determine its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. We determined the inertia factor groups of <span>\\({\\overline{G}}\\)</span> by analysing the maximal subgroups of <i>Sz</i>(8) : 3 and maximal of the maximal subgroups of <i>Sz</i>(8) : 3 together with various other information. It turns out that the character table of <span>\\({\\overline{G}}\\)</span> is a <span>\\(43 \\times 43\\)</span> complex valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 7.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"34 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-023-01130-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01130-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Suzuki simple group Sz(8) has an automorphism group 3. Using the electronic Atlas [22], the group Sz(8) : 3 has an absolutely irreducible module of dimension 12 over \({\mathbb {F}}_{2}.\) Therefore a split extension group of the form \(2^{12}{:}(Sz(8){:}3):= {\overline{G}}\) exists. In this paper we study this group, where we determine its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. We determined the inertia factor groups of \({\overline{G}}\) by analysing the maximal subgroups of Sz(8) : 3 and maximal of the maximal subgroups of Sz(8) : 3 together with various other information. It turns out that the character table of \({\overline{G}}\) is a \(43 \times 43\) complex valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 7.

关于铃木集团Sz(8)的群延
铃木单群Sz(8)有一个自同构群3。利用电子图集[22],群Sz(8): 3在\({\mathbb {F}}_{2}.\)上有一个绝对不可约的维数为12的模,因此存在一个形式为\(2^{12}{:}(Sz(8){:}3):= {\overline{G}}\)的分裂扩展群。本文研究了这个群,利用协集分析技术结合Clifford-Fischer理论确定了它的共轭类和特征表。通过分析Sz(8): 3的极大子群和Sz(8): 3的极大子群的极大子群,并结合其他各种信息,确定了\({\overline{G}}\)的惯性因子群。原来\({\overline{G}}\)的字符表是一个\(43 \times 43\)复值矩阵,而Fischer矩阵都是整数矩阵,大小从1到7不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信