Legendre magnetic flows for totally η-umbilic real hypersurfaces in a complex hyperbolic space

IF 0.6 4区 数学 Q3 MATHEMATICS
Qingsong Shi , Toshiaki Adachi
{"title":"Legendre magnetic flows for totally η-umbilic real hypersurfaces in a complex hyperbolic space","authors":"Qingsong Shi ,&nbsp;Toshiaki Adachi","doi":"10.1016/j.difgeo.2023.102074","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We study trajectories for Sasakian magnetic fields on horospheres, on geodesic spheres and on tubes around totally geodesic complex hypersurfaces in a complex </span>hyperbolic space. Considering the </span>subbundle<span><span> formed by unit tangent vectors orthogonal to the </span>characteristic vector field, flows associated with trajectories on this subbundle are smoothly conjugate to each other for each geodesic sphere, and are classified into two and three classes for a horosphere and for each tube, respectively.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study trajectories for Sasakian magnetic fields on horospheres, on geodesic spheres and on tubes around totally geodesic complex hypersurfaces in a complex hyperbolic space. Considering the subbundle formed by unit tangent vectors orthogonal to the characteristic vector field, flows associated with trajectories on this subbundle are smoothly conjugate to each other for each geodesic sphere, and are classified into two and three classes for a horosphere and for each tube, respectively.

复双曲空间中全η-脐带实超曲面的勒让德磁流
本文研究了复双曲空间中全测地线复超曲面上全测地线复超曲面上全测地线复超曲面上sasaki磁场的轨迹。考虑由与特征向量场正交的单位切向量构成的子束,与该子束上的轨迹相关联的流对于每个测地线球都是平滑共轭的,并且对于一个天球和每个管分别分为两类和三类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信