An improved probability propagation algorithm for density peak clustering based on natural nearest neighborhood

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2022-09-01 DOI:10.1016/j.array.2022.100232
Wendi Zuo , Xinmin Hou
{"title":"An improved probability propagation algorithm for density peak clustering based on natural nearest neighborhood","authors":"Wendi Zuo ,&nbsp;Xinmin Hou","doi":"10.1016/j.array.2022.100232","DOIUrl":null,"url":null,"abstract":"<div><p>Clustering by fast search and find of density peaks (DPC) (Since, 2014) has been proven to be a promising clustering approach that efficiently discovers the centers of clusters by finding the density peaks. The accuracy of DPC depends on the cutoff distance (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>), the cluster number (<span><math><mi>k</mi></math></span>) and the selection of the centers of clusters. Moreover, the final allocation strategy is sensitive and has poor fault tolerance. The shortcomings above make the algorithm sensitive to parameters and only applicable for some specific datasets. To overcome the limitations of DPC, this paper presents an improved probability propagation algorithm for density peak clustering based on the natural nearest neighborhood (DPC-PPNNN). By introducing the idea of natural nearest neighborhood and probability propagation, DPC-PPNNN realizes the nonparametric clustering process and makes the algorithm applicable for more complex datasets. In experiments on several datasets, DPC-PPNNN is shown to outperform DPC, K-means and DBSCAN.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"15 ","pages":"Article 100232"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005622000704/pdfft?md5=d384e72bc11472f329ffedfc0c3ee02c&pid=1-s2.0-S2590005622000704-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005622000704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering by fast search and find of density peaks (DPC) (Since, 2014) has been proven to be a promising clustering approach that efficiently discovers the centers of clusters by finding the density peaks. The accuracy of DPC depends on the cutoff distance (dc), the cluster number (k) and the selection of the centers of clusters. Moreover, the final allocation strategy is sensitive and has poor fault tolerance. The shortcomings above make the algorithm sensitive to parameters and only applicable for some specific datasets. To overcome the limitations of DPC, this paper presents an improved probability propagation algorithm for density peak clustering based on the natural nearest neighborhood (DPC-PPNNN). By introducing the idea of natural nearest neighborhood and probability propagation, DPC-PPNNN realizes the nonparametric clustering process and makes the algorithm applicable for more complex datasets. In experiments on several datasets, DPC-PPNNN is shown to outperform DPC, K-means and DBSCAN.

基于自然最近邻的密度峰值聚类的改进概率传播算法
快速搜索和发现密度峰聚类(DPC)(自2014年以来)已被证明是一种很有前途的聚类方法,通过寻找密度峰来有效地发现聚类的中心。DPC的精度取决于截断距离(dc)、聚类数(k)和聚类中心的选择。最后的分配策略比较敏感,容错性较差。以上缺点使得该算法对参数比较敏感,只适用于某些特定的数据集。为了克服DPC算法的局限性,提出了一种改进的基于自然最近邻的密度峰聚类概率传播算法(DPC- ppnnn)。通过引入自然最近邻和概率传播的思想,DPC-PPNNN实现了非参数聚类过程,使算法适用于更复杂的数据集。在多个数据集上的实验表明,DPC- ppnnn的性能优于DPC、K-means和DBSCAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信