Rachael Lawrance, Konstantina Skaltsa, Antoine Regnault, Lysbeth Floden
{"title":"Reflections on estimands for patient-reported outcomes in cancer clinical trials.","authors":"Rachael Lawrance, Konstantina Skaltsa, Antoine Regnault, Lysbeth Floden","doi":"10.1080/10543406.2023.2280628","DOIUrl":null,"url":null,"abstract":"<p><p>It is common and important to include the patient's perspective of the impact of treatment on health-related quality of life (HRQoL) outcomes. In this commentary, we focus on applying the new addendum to ICH E9 guideline E9 (R1) relating to the estimand framework to Patient Reported Outcomes (PROs) collected in cancer clinical trials, from a statistician's viewpoint. Currently, common practice for statistical analysis of PRO endpoints of published cancer clinical trials demonstrates ambiguity, leaving critical questions unspecified, hindering conclusions about the effect of treatment on PRO endpoints as well as comparability between clinical trials. To avoid this scenario, we advocate the systematic use of the estimand framework which requires the prospective definition of clear PRO research questions. Among the five attributes of the estimands framework, the definition of the endpoint (what is the right PRO measure and timeframe to target and why?), the intercurrent event identification and management (what happens with PRO data post-disease progression, what is the impact of death?) and the population-level summary (what is an acceptable statistical summary for PRO data?) require the most attention for PRO estimands. We identify good practice and highlight discussion points including the challenges of statistical analysis in the presence of missing and/or unobservable data and in relation to death. Through this discussion we highlight that there is no \"statistical magic\", but that the estimand framework will help you find out what you really want to know when quantifying the benefit of treatments from the patients' perspective.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"782-792"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2280628","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
It is common and important to include the patient's perspective of the impact of treatment on health-related quality of life (HRQoL) outcomes. In this commentary, we focus on applying the new addendum to ICH E9 guideline E9 (R1) relating to the estimand framework to Patient Reported Outcomes (PROs) collected in cancer clinical trials, from a statistician's viewpoint. Currently, common practice for statistical analysis of PRO endpoints of published cancer clinical trials demonstrates ambiguity, leaving critical questions unspecified, hindering conclusions about the effect of treatment on PRO endpoints as well as comparability between clinical trials. To avoid this scenario, we advocate the systematic use of the estimand framework which requires the prospective definition of clear PRO research questions. Among the five attributes of the estimands framework, the definition of the endpoint (what is the right PRO measure and timeframe to target and why?), the intercurrent event identification and management (what happens with PRO data post-disease progression, what is the impact of death?) and the population-level summary (what is an acceptable statistical summary for PRO data?) require the most attention for PRO estimands. We identify good practice and highlight discussion points including the challenges of statistical analysis in the presence of missing and/or unobservable data and in relation to death. Through this discussion we highlight that there is no "statistical magic", but that the estimand framework will help you find out what you really want to know when quantifying the benefit of treatments from the patients' perspective.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.