On statistical inference with high-dimensional sparse CCA.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Information and Inference-A Journal of the Ima Pub Date : 2023-11-17 eCollection Date: 2023-12-01 DOI:10.1093/imaiai/iaad040
Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee
{"title":"On statistical inference with high-dimensional sparse CCA.","authors":"Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee","doi":"10.1093/imaiai/iaad040","DOIUrl":null,"url":null,"abstract":"<p><p>We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"12 4","pages":"iaad040"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.

高维稀疏CCA的统计推断。
在稀疏性条件下,研究了两个高维向量间的典型相关方向和强度的渐近精确推断。在这方面,我们的主要贡献是开发了典型相关分析问题的新表示,在此基础上,可以对合理的初始估计量进行一步偏差校正。在这方面,我们的分析结果在高维干扰参数的适当结构限制下是自适应的,在这种设置中,这些参数对应于感兴趣变量的协方差矩阵。我们进一步补充理论保证背后的程序与广泛的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信