A high-frequency trade execution model for supervised learning†

High Frequency Pub Date : 2018-02-23 DOI:10.1002/hf2.10016
Matthew Dixon
{"title":"A high-frequency trade execution model for supervised learning†","authors":"Matthew Dixon","doi":"10.1002/hf2.10016","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a high-frequency trade execution model to evaluate the economic impact of supervised machine learners. Extending the concept of a confusion matrix, we present a “trade information matrix” to attribute the expected profit and loss of the high-frequency strategy under execution constraints, such as fill probabilities and position dependent trade rules, to correct and incorrect predictions. We apply the trade execution model and trade information matrix to Level II E-mini S&amp;P 500 futures history and demonstrate an estimation approach for measuring the sensitivity of the P&amp;L to the error of a recurrent neural network. Our approach directly evaluates the performance sensitivity of a market-making strategy to prediction error and augments traditional market simulation-based testing.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"1 1","pages":"32-52"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a high-frequency trade execution model to evaluate the economic impact of supervised machine learners. Extending the concept of a confusion matrix, we present a “trade information matrix” to attribute the expected profit and loss of the high-frequency strategy under execution constraints, such as fill probabilities and position dependent trade rules, to correct and incorrect predictions. We apply the trade execution model and trade information matrix to Level II E-mini S&P 500 futures history and demonstrate an estimation approach for measuring the sensitivity of the P&L to the error of a recurrent neural network. Our approach directly evaluates the performance sensitivity of a market-making strategy to prediction error and augments traditional market simulation-based testing.

Abstract Image

监督学习的高频交易执行模型[j]
本文介绍了一个高频交易执行模型来评估监督机器学习者的经济影响。我们扩展了混淆矩阵的概念,提出了一个“交易信息矩阵”,将高频策略在执行约束(如填充概率和头寸依赖交易规则)下的预期利润和损失归为正确和不正确的预测。我们将交易执行模型和交易信息矩阵应用于二级E-mini标准普尔500期货历史,并展示了一种测量P&L对递归神经网络误差敏感性的估计方法。我们的方法直接评估了做市策略对预测误差的性能敏感性,并增强了传统的基于市场模拟的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信