{"title":"Forecasting Commodity Market Returns Volatility: A Hybrid Ensemble Learning GARCH-LSTM based Approach","authors":"Kshitij Kakade, Aswini Kumar Mishra, Kshitish Ghate, Shivang Gupta","doi":"10.1002/isaf.1515","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the advantage of combining the forecasting abilities of multiple generalized autoregressive conditional heteroscedasticity (GARCH)-type models, such as the standard GARCH (GARCH), exponential GARCH (eGARCH), and threshold GARCH (tGARCH) models with advanced deep learning methods to predict the volatility of five important metals (nickel, copper, tin, lead, and gold) in the Indian commodity market. This paper proposes integrating the forecasts of one to three GARCH-type models into an ensemble learning-based hybrid long short-term memory (LSTM) model to forecast commodity price volatility. We further evaluate the forecasting performance of these models for standalone LSTM and GARCH-type models using the root mean squared error, mean absolute error, and mean fundamental percentage error. The results highlight that combining the information from the forecasts of multiple GARCH types into a hybrid LSTM model leads to superior volatility forecasting capability. The SET-LSTM, which represents the model that combines forecasts of the GARCH, eGARCH, and tGARCH into the LSTM hybrid, has shown the best overall results for all metals, barring a few exceptions. Moreover, the equivalence of forecasting accuracy is tested using the Diebold–Mariano and Wilcoxon signed-rank tests.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 2","pages":"103-117"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the advantage of combining the forecasting abilities of multiple generalized autoregressive conditional heteroscedasticity (GARCH)-type models, such as the standard GARCH (GARCH), exponential GARCH (eGARCH), and threshold GARCH (tGARCH) models with advanced deep learning methods to predict the volatility of five important metals (nickel, copper, tin, lead, and gold) in the Indian commodity market. This paper proposes integrating the forecasts of one to three GARCH-type models into an ensemble learning-based hybrid long short-term memory (LSTM) model to forecast commodity price volatility. We further evaluate the forecasting performance of these models for standalone LSTM and GARCH-type models using the root mean squared error, mean absolute error, and mean fundamental percentage error. The results highlight that combining the information from the forecasts of multiple GARCH types into a hybrid LSTM model leads to superior volatility forecasting capability. The SET-LSTM, which represents the model that combines forecasts of the GARCH, eGARCH, and tGARCH into the LSTM hybrid, has shown the best overall results for all metals, barring a few exceptions. Moreover, the equivalence of forecasting accuracy is tested using the Diebold–Mariano and Wilcoxon signed-rank tests.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.