Oncogenetic network estimation with disjunctive Bayesian networks

Phillip B. Nicol, Kevin R. Coombes, Courtney Deaver, Oksana Chkrebtii, Subhadeep Paul, Amanda E. Toland, Amir Asiaee
{"title":"Oncogenetic network estimation with disjunctive Bayesian networks","authors":"Phillip B. Nicol,&nbsp;Kevin R. Coombes,&nbsp;Courtney Deaver,&nbsp;Oksana Chkrebtii,&nbsp;Subhadeep Paul,&nbsp;Amanda E. Toland,&nbsp;Amir Asiaee","doi":"10.1002/cso2.1027","DOIUrl":null,"url":null,"abstract":"<p><b>Motivation</b>: Cancer is the process of accumulating genetic alterations that confer selective advantages to tumor cells. The order in which aberrations occur is not arbitrary, and inferring the order of events is challenging due to the lack of longitudinal samples from tumors. Moreover, a network model of oncogenesis should capture biological facts such as distinct progression trajectories of cancer subtypes and patterns of mutual exclusivity of alterations in the same pathways.</p><p>In this paper, we present the disjunctive Bayesian network (DBN), a novel oncogenetic model with a phylogenetic interpretation. DBN is expressive enough to capture cancer subtypes' trajectories and mutually exclusive relations between alterations from unstratified data.</p><p><b>Results</b>: In cases where the number of studied alterations is small (<math>\n <mrow>\n <mo>&lt;</mo>\n <mn>30</mn>\n </mrow></math>), we provide an efficient dynamic programming implementation of an exact structure learning method that finds a best DBN in the superexponential search space of networks. In rare cases that the number of alterations is large, we provided an efficient genetic algorithm in our software package, OncoBN. Through numerous synthetic and real data experiments, we show OncoBN's ability in inferring ground truth networks and recovering biologically meaningful progression networks.</p><p><b>Availability</b>: OncoBN is implemented in R and is available at https://github.com/phillipnicol/OncoBN.</p>","PeriodicalId":72658,"journal":{"name":"Computational and systems oncology","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cso2.1027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and systems oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cso2.1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Cancer is the process of accumulating genetic alterations that confer selective advantages to tumor cells. The order in which aberrations occur is not arbitrary, and inferring the order of events is challenging due to the lack of longitudinal samples from tumors. Moreover, a network model of oncogenesis should capture biological facts such as distinct progression trajectories of cancer subtypes and patterns of mutual exclusivity of alterations in the same pathways.

In this paper, we present the disjunctive Bayesian network (DBN), a novel oncogenetic model with a phylogenetic interpretation. DBN is expressive enough to capture cancer subtypes' trajectories and mutually exclusive relations between alterations from unstratified data.

Results: In cases where the number of studied alterations is small ( < 30 ), we provide an efficient dynamic programming implementation of an exact structure learning method that finds a best DBN in the superexponential search space of networks. In rare cases that the number of alterations is large, we provided an efficient genetic algorithm in our software package, OncoBN. Through numerous synthetic and real data experiments, we show OncoBN's ability in inferring ground truth networks and recovering biologically meaningful progression networks.

Availability: OncoBN is implemented in R and is available at https://github.com/phillipnicol/OncoBN.

Abstract Image

基于析取贝叶斯网络的肿瘤发生网络估计
动机:癌症是一个积累遗传改变的过程,这些改变赋予肿瘤细胞选择性优势。畸变发生的顺序不是任意的,由于缺乏肿瘤的纵向样本,推断事件的顺序是具有挑战性的。此外,肿瘤发生的网络模型应该捕捉生物学事实,如癌症亚型的不同进展轨迹和相同途径中相互排他性改变的模式。在本文中,我们提出了析取贝叶斯网络(DBN),这是一种具有系统发育解释的新型肿瘤发生模型。DBN具有足够的表达能力,可以从非分层数据中捕捉癌症亚型的轨迹和变化之间的互斥关系。结果:在研究的改变数量较少的情况下(<30),我们提供了一种精确结构学习方法的高效动态规划实现,该方法在网络的超指数搜索空间中找到最佳DBN。在极少数情况下,如果改变的数量很大,我们在我们的软件包OncoBN中提供了一个有效的遗传算法。通过大量的合成和真实数据实验,我们证明了OncoBN在推断地面真值网络和恢复生物学上有意义的进展网络方面的能力。可用性:OncoBN是用R实现的,可以在https://github.com/phillipnicol/OncoBN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信