Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Eko Prasetyo , Rani Purbaningtyas , Raden Dimas Adityo , Nanik Suciati , Chastine Fatichah
{"title":"Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes","authors":"Eko Prasetyo ,&nbsp;Rani Purbaningtyas ,&nbsp;Raden Dimas Adityo ,&nbsp;Nanik Suciati ,&nbsp;Chastine Fatichah","doi":"10.1016/j.inpa.2022.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Image classification using Convolutional Neural Network (CNN) achieves optimal performance with a particular strategy. MobileNet reduces the parameter number for learning features by switching from the standard convolution paradigm to the depthwise separable convolution (DSC) paradigm. However, there are not enough features to learn for identifying the freshness of fish eyes. Furthermore, minor variances in features should not require complicated CNN architecture. In this paper, our first contribution proposed DSC Bottleneck with Expansion for learning features of the freshness of fish eyes with a Bottleneck Multiplier. The second contribution proposed Residual Transition to bridge current feature maps and skip connection feature maps to the next convolution block. The third contribution proposed MobileNetV1 Bottleneck with Expansion (MB-BE) for classifying the freshness of fish eyes. The result obtained from the Freshness of the Fish Eyes dataset shows that MB-BE outperformed other models such as original MobileNet, VGG16, Densenet, Nasnet Mobile with 63.21% accuracy.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 485-496"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000026/pdfft?md5=64f3cd6f2991cf4a7c2f37bdf68664d1&pid=1-s2.0-S2214317322000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Image classification using Convolutional Neural Network (CNN) achieves optimal performance with a particular strategy. MobileNet reduces the parameter number for learning features by switching from the standard convolution paradigm to the depthwise separable convolution (DSC) paradigm. However, there are not enough features to learn for identifying the freshness of fish eyes. Furthermore, minor variances in features should not require complicated CNN architecture. In this paper, our first contribution proposed DSC Bottleneck with Expansion for learning features of the freshness of fish eyes with a Bottleneck Multiplier. The second contribution proposed Residual Transition to bridge current feature maps and skip connection feature maps to the next convolution block. The third contribution proposed MobileNetV1 Bottleneck with Expansion (MB-BE) for classifying the freshness of fish eyes. The result obtained from the Freshness of the Fish Eyes dataset shows that MB-BE outperformed other models such as original MobileNet, VGG16, Densenet, Nasnet Mobile with 63.21% accuracy.

结合MobileNetV1和深度可分离卷积瓶颈扩展进行鱼眼新鲜度分类
使用卷积神经网络(CNN)进行图像分类,在特定的策略下达到最优性能。MobileNet通过从标准卷积范式切换到深度可分离卷积(DSC)范式,减少了学习特征的参数数量。然而,目前还没有足够的特征来识别鱼眼的新鲜度。此外,特征的微小变化不需要复杂的CNN架构。在本文中,我们的第一个贡献是提出DSC瓶颈与扩展,用瓶颈乘数来学习鱼眼新鲜度的特征。第二个贡献提出了残差过渡,以桥接当前特征映射并跳过连接特征映射到下一个卷积块。第三个贡献提出了MobileNetV1瓶颈扩展(MB-BE),用于对鱼眼新鲜度进行分类。从鱼眼数据集的新鲜度中获得的结果表明,MB-BE以63.21%的准确率优于原始MobileNet、VGG16、Densenet、Nasnet Mobile等模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信