{"title":"Bottleneck extrema","authors":"Jack Edmonds , D.R. Fulkerson","doi":"10.1016/S0021-9800(70)80083-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be a finite set. Call a family of mutually noncomparable subsets of <em>E</em> a clutter on <em>E</em>. It is shown that for any clutter <span><math><mi>ℛ</mi></math></span> on <em>E</em>, there exists a unique clutter <span><math><mi>ℒ</mi></math></span> on <em>E</em> such that, for any function <em>f</em> from <em>E</em> to real numbers,</p><p><span><span><span><math><mrow><mtable><mtr><mtd><mrow><mo>min</mo><mo></mo><mo>max</mo><mo></mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>R</mo><msup><mo>∈</mo><mi>ℛ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>R</mo></msup></mrow></mtd></mtr></mtable><mtable><mtr><mtd><mrow><mo>max</mo><mo></mo><mo>min</mo><mo></mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>S</mo><msup><mo>∈</mo><mi>ℒ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>S</mo></msup></mrow></mtd></mtr></mtable></mrow></math></span></span></span></p><p>Specifically, <span><math><mi>ℒ</mi></math></span> consists of the minimal subsets of <em>E</em> that have non-empty intersection with every member of <span><math><mi>ℛ</mi></math></span>. The pair <span><math><mrow><mrow><mo>(</mo><mrow><mi>ℛ</mi><mo>,</mo><mi>ℒ</mi></mrow><mo>)</mo></mrow></mrow></math></span> is called a blocking system on <em>E</em>. An algorithm is described and several examples of blockings systems are discussed.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 3","pages":"Pages 299-306"},"PeriodicalIF":0.0000,"publicationDate":"1970-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80083-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let E be a finite set. Call a family of mutually noncomparable subsets of E a clutter on E. It is shown that for any clutter on E, there exists a unique clutter on E such that, for any function f from E to real numbers,
Specifically, consists of the minimal subsets of E that have non-empty intersection with every member of . The pair is called a blocking system on E. An algorithm is described and several examples of blockings systems are discussed.