Optimization of subsurface models with multiple criteria using Lexicase Selection

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Yifan He , Claus Aranha , Antony Hallam , Romain Chassagne
{"title":"Optimization of subsurface models with multiple criteria using Lexicase Selection","authors":"Yifan He ,&nbsp;Claus Aranha ,&nbsp;Antony Hallam ,&nbsp;Romain Chassagne","doi":"10.1016/j.orp.2022.100237","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic History Matching (SHM) is a key problem in the geosciences community, requiring optimal parameters of a subsurface model that match the observed data from multiple in-situ measurements. Therefore, the SHM problems are usually solved with Multi-Objective Evolutionary Algorithms (MOEAs). This group of algorithms optimize multiple objectives simultaneously, considering the trade-off between objectives. However, SHM requires the solutions that are good on all objectives rather than a trade-off. In this study, we propose a Differential Evolution algorithm using Lexicase Selection to solve the SHM problems. Unlike the MOEAs, this selection method pushes the solutions to perform well on all objectives. We compared this method with two MOEAs, namely Non-dominated Sorting Genetic Algorithm II and Reference Vector-guided Evolutionary Algorithm, on two SHM problems. The results show that this method generates more solutions near the ground truth.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"9 ","pages":"Article 100237"},"PeriodicalIF":3.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716022000124/pdfft?md5=6f8e3845b353b55b202facd069c26b3a&pid=1-s2.0-S2214716022000124-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716022000124","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic History Matching (SHM) is a key problem in the geosciences community, requiring optimal parameters of a subsurface model that match the observed data from multiple in-situ measurements. Therefore, the SHM problems are usually solved with Multi-Objective Evolutionary Algorithms (MOEAs). This group of algorithms optimize multiple objectives simultaneously, considering the trade-off between objectives. However, SHM requires the solutions that are good on all objectives rather than a trade-off. In this study, we propose a Differential Evolution algorithm using Lexicase Selection to solve the SHM problems. Unlike the MOEAs, this selection method pushes the solutions to perform well on all objectives. We compared this method with two MOEAs, namely Non-dominated Sorting Genetic Algorithm II and Reference Vector-guided Evolutionary Algorithm, on two SHM problems. The results show that this method generates more solutions near the ground truth.

基于Lexicase选择的多准则地下模型优化
地震历史匹配(SHM)是地球科学界的一个关键问题,它要求地下模型的最佳参数与多次原位测量的观测数据相匹配。因此,通常使用多目标进化算法(moea)来解决SHM问题。这组算法同时优化多个目标,考虑目标之间的权衡。然而,SHM需要对所有目标都很好的解决方案,而不是权衡取舍。在这项研究中,我们提出了一种使用Lexicase选择的差分进化算法来解决SHM问题。与moea不同,这种选择方法促使解决方案在所有目标上都表现良好。我们将该方法与非支配排序遗传算法II和参考向量引导进化算法两种moea进行了比较,以解决两个SHM问题。结果表明,该方法能生成更多接近地面真值的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信