{"title":"Systematic deviation in smooth mixed models for multi-level longitudinal data","authors":"Viani A. Biatat Djeundje","doi":"10.1016/j.stamet.2016.05.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>The analysis of longitudinal data or repeated measurements is an important and growing area of </span>Statistics<span>. In this context, data come in different formats but typically, they have a hierarchical or multi-level structure including group and subject components, and the main purpose of the analysis is usually to estimate these components from the data. A standard way to perform this estimation is via mixed models. In this paper, we show that the estimated group effects from standard smooth mixed models can deviate systematically from the underlying group mean, leading to wrong conclusions about the data. We then present two ways to avoid such systematic deviations and misinterpretations when fitting flexible mixed models to multi-level data. The first method is a marginal procedure, and the second method is based on the conditional distribution of the subject effects derived from appropriate constraints. Both methods are robust against mis-specification of the covariance structure in the sense that they allow one to resolve the lack of centring found in standard smooth mixed models.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"32 ","pages":"Pages 203-217"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.05.003","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6
Abstract
The analysis of longitudinal data or repeated measurements is an important and growing area of Statistics. In this context, data come in different formats but typically, they have a hierarchical or multi-level structure including group and subject components, and the main purpose of the analysis is usually to estimate these components from the data. A standard way to perform this estimation is via mixed models. In this paper, we show that the estimated group effects from standard smooth mixed models can deviate systematically from the underlying group mean, leading to wrong conclusions about the data. We then present two ways to avoid such systematic deviations and misinterpretations when fitting flexible mixed models to multi-level data. The first method is a marginal procedure, and the second method is based on the conditional distribution of the subject effects derived from appropriate constraints. Both methods are robust against mis-specification of the covariance structure in the sense that they allow one to resolve the lack of centring found in standard smooth mixed models.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.