Hidden behind the obvious: Misleading keywords and implicitly abusive language on social media

Q1 Social Sciences
Wenjie Yin, Arkaitz Zubiaga
{"title":"Hidden behind the obvious: Misleading keywords and implicitly abusive language on social media","authors":"Wenjie Yin,&nbsp;Arkaitz Zubiaga","doi":"10.1016/j.osnem.2022.100210","DOIUrl":null,"url":null,"abstract":"<div><p>While social media offers freedom of self-expression, abusive language carry significant negative social impact. Driven by the importance of the issue, research in the automated detection of abusive language has witnessed growth and improvement. However, these detection models display a reliance on strongly indicative keywords, such as slurs and profanity. This means that they can falsely (1a) miss abuse without such keywords or (1b) flag non-abuse with such keywords, and that (2) they perform poorly on unseen data. Despite the recognition of these problems, gaps and inconsistencies remain in the literature. In this study, we analyse the impact of keywords from dataset construction to model behaviour in detail, with a focus on how models make mistakes on (1a) and (1b), and how (1a) and (1b) interact with (2). Through the analysis, we provide suggestions for future research to address all three problems.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468696422000143/pdfft?md5=ee7d87179b98cdab8269c5284ee10fcf&pid=1-s2.0-S2468696422000143-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696422000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

While social media offers freedom of self-expression, abusive language carry significant negative social impact. Driven by the importance of the issue, research in the automated detection of abusive language has witnessed growth and improvement. However, these detection models display a reliance on strongly indicative keywords, such as slurs and profanity. This means that they can falsely (1a) miss abuse without such keywords or (1b) flag non-abuse with such keywords, and that (2) they perform poorly on unseen data. Despite the recognition of these problems, gaps and inconsistencies remain in the literature. In this study, we analyse the impact of keywords from dataset construction to model behaviour in detail, with a focus on how models make mistakes on (1a) and (1b), and how (1a) and (1b) interact with (2). Through the analysis, we provide suggestions for future research to address all three problems.

显而易见的背后隐藏着:社交媒体上误导性的关键词和含蓄的辱骂性语言
虽然社交媒体提供了自我表达的自由,但辱骂性语言会带来严重的负面社会影响。在这个问题的重要性的推动下,对辱骂性语言的自动检测的研究得到了发展和改进。然而,这些检测模型显示了对强烈指示性关键字的依赖,如诽谤和亵渎。这意味着它们可能会错误地(1a)忽略没有这些关键字的滥用,或(1b)标记有这些关键字的非滥用,以及(2)它们在看不见的数据上表现不佳。尽管认识到了这些问题,但文献中仍然存在差距和不一致之处。在本研究中,我们详细分析了从数据集构建到模型行为的关键字的影响,重点关注模型如何在(1a)和(1b)上犯错误,以及(1a)和(1b)如何与(2)相互作用。通过分析,我们为未来的研究提供了解决这三个问题的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信