CTtrack: A CNN+Transformer-based framework for fiber orientation estimation & tractography

S.M.H. Hosseini , M. Hassanpour , S. Masoudnia , S. Iraji , S. Raminfard , M. Nazem-Zadeh
{"title":"CTtrack: A CNN+Transformer-based framework for fiber orientation estimation & tractography","authors":"S.M.H. Hosseini ,&nbsp;M. Hassanpour ,&nbsp;S. Masoudnia ,&nbsp;S. Iraji ,&nbsp;S. Raminfard ,&nbsp;M. Nazem-Zadeh","doi":"10.1016/j.neuri.2022.100099","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, multiple data-driven fiber orientation distribution function (fODF) estimation algorithms and automatic tractography pipelines have been proposed to address the limitations of traditional methods. However, these approaches lack precision and generalizability. To tackle these shortcomings, we introduce CTtrack, a CNN+Transformer-based pipeline to estimate fODFs and perform tractography. In this approach, a convolutional neural network (CNN) module is employed to project the resampled diffusion-weighted magnetic resonance imaging (DW-MRI) data to a lower dimension. Then, a transformer model estimates the fiber orientation distribution functions using the projected data within a local block around each voxel. The proposed model represents the extracted fODFs by spherical harmonics coefficients. The predicted fiber ODFs can be used for both deterministic and probabilistic tractography. Our pipeline was tested in terms of the precision and robustness in estimating fODFs and performing tractography using both simulated and real diffusion data. The Tractometer tool was employed to compare our method with the classical and data-driven tractography approaches. The qualitative and quantitative assessments illustrate the competitive performance of our framework compared to other available algorithms.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 4","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528622000619/pdfft?md5=55e258b2643f452c1045044d358bbfac&pid=1-s2.0-S2772528622000619-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, multiple data-driven fiber orientation distribution function (fODF) estimation algorithms and automatic tractography pipelines have been proposed to address the limitations of traditional methods. However, these approaches lack precision and generalizability. To tackle these shortcomings, we introduce CTtrack, a CNN+Transformer-based pipeline to estimate fODFs and perform tractography. In this approach, a convolutional neural network (CNN) module is employed to project the resampled diffusion-weighted magnetic resonance imaging (DW-MRI) data to a lower dimension. Then, a transformer model estimates the fiber orientation distribution functions using the projected data within a local block around each voxel. The proposed model represents the extracted fODFs by spherical harmonics coefficients. The predicted fiber ODFs can be used for both deterministic and probabilistic tractography. Our pipeline was tested in terms of the precision and robustness in estimating fODFs and performing tractography using both simulated and real diffusion data. The Tractometer tool was employed to compare our method with the classical and data-driven tractography approaches. The qualitative and quantitative assessments illustrate the competitive performance of our framework compared to other available algorithms.

CTtrack:一个基于CNN+变压器的光纤方向估计和牵引成像框架
近年来,为了解决传统方法的局限性,提出了多种数据驱动的光纤方向分布函数(fODF)估计算法和自动跟踪管道。然而,这些方法缺乏精确性和通用性。为了解决这些缺点,我们引入了CTtrack,一种基于CNN+变压器的管道来估计fodf并进行牵引道成像。在该方法中,使用卷积神经网络(CNN)模块将重采样的扩散加权磁共振成像(DW-MRI)数据投影到较低的维度。然后,变压器模型利用每个体素周围局部块内的投影数据估计光纤方向分布函数。该模型用球谐系数表示提取的fodf。所预测的光纤odf可用于确定性和概率型光纤束成像。我们的管道在估计fodf和使用模拟和真实扩散数据进行牵引成像方面进行了精度和鲁棒性测试。使用Tractometer工具将我们的方法与经典的和数据驱动的Tractometer方法进行比较。定性和定量评估说明了我们的框架与其他可用算法相比的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信